94,564 research outputs found

    Pressure-induced Phonon Softenings and the Structural and Magnetic Transitions in CrO2_{2}

    Full text link
    To investigate the pressure-induced structural transitions of chromium dioxide (CrO2_{2}), phonon dispersions and total energy band structures are calculated as a function of pressure. The first structural transition has been confirmed at Pā‰ˆ\approx 10 GPa from the ground state tetragonal CrO2_{2} (t-CrO2_{2}) of rutile type to orthorhombic CrO2_{2} (o-CrO2_{2}) of CaCl2_{2} type. The half-metallic property is found to be preserved in o-CrO2_{2}. The softening of Raman-active B1g_{1g} phonon mode, which is responsible for this structural transition, is demonstrated. The second structural transition is found to occur for Pā‰„\geq 61.1 GPa from ferromagnetic (FM) o-CrO2_{2} to nonmagnetic (NM) monoclinic CrO2_{2} (m-CrO2_{2}) of MoO2_{2} type, which is related to the softening mode at {\bf q} = R(1/2,0,1/2). The third structural transition has been newly identified at P= 88.8 GPa from m-CrO2_{2} to cubic CrO2_{2} of CaF2_{2} type that is a FM insulator

    Separation of Topographic Features from Magnetic Force Images Using Capacitive Coupling Effect

    Get PDF
    Separation of topographic features from magnetic images has been an issue for the past two decades in magnetic force microscopy (MFM). The frequent pickups of the topographic features are interpreted as transitions of the tip between bistable states of the tip-sample assembly in the noncontact and tapping regions. MFM using electrostatic force modulation demonstrates the separation of the topographic features from the magnetic images by removing the tapping state from the bistable states through the introduction of a capacitive coupling
    • ā€¦
    corecore