42 research outputs found

    Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis

    Get PDF
    Hutchinson-Gilford progeria syndrome is a rare genetic disorder that mimics certain aspects of aging prematurely. Recent work has revealed that mutations in the lamin A gene are a cause of the disease. We show here that cellular aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by a period of hyperproliferation and terminates with a large increase in the rate of apoptosis. The occurrence of cells with abnormal nuclear morphology reported by others is shown to be a result of cell division since the fraction of these abnormalities increases with cellular age. Similarly, the proportion of cells with an abnormal or absent A-type lamina increases with age. These data provide clues as to the cellular basis for premature aging in HGPS and support the view that cellular senescence and tissue homeostasis are important factors in the normal aging process

    Senescent human diploid fibroblasts are able to support DNA synthesis and to express markers associated with proliferation

    Get PDF
    The characteristic limited reproductive life-span of normal human fibroblasts in culture is due to a steadily decreasing fraction of cells able to proliferate in the standard rich growth media. We have observed that restricting the growth factor supply to old cells for variable lengths of time in culture increases the fraction of cells that can enter S-phase; although these cells do not go on to divide. Thus, it seems that there is a transient phase between the proliferating state and the irreversibly post-mitotic, senescent state. Perhaps a 'quiescent-G0' state, which can be maintained in the presence of growth factors, is a stage on the pathway to mortalization and senescence

    Farnesyltransferase inhibitor treatment restores chromosome territory positions and active chromosome dynamics in Hutchinson-Gilford progeria syndrome cells

    Get PDF
    Copyright @ 2011 Mehta et al.; licensee BioMed Central Ltd. This article has been made available through the Brunel Open Access Publishing Fund. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing syndrome that affects children leading to premature death, usually from heart infarction or strokes, making this syndrome similar to normative ageing. HGPS is commonly caused by a mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. Progerin cannot be processed as wild-type pre-lamin A and remains farnesylated, leading to its aberrant behavior during interphase and mitosis. Farnesyltransferase inhibitors prevent the accumulation of farnesylated progerin, producing a less toxic protein. RESULTS: We have found that in proliferating fibroblasts derived from HGPS patients the nuclear location of interphase chromosomes differs from control proliferating cells and mimics that of control quiescent fibroblasts, with smaller chromosomes toward the nuclear interior and larger chromosomes toward the nuclear periphery. For this study we have treated HGPS fibroblasts with farnesyltransferase inhibitors and analyzed the nuclear location of individual chromosome territories. We have found that after exposure to farnesyltransferase inhibitors mis-localized chromosome territories were restored to a nuclear position akin to chromosomes in proliferating control cells. Furthermore, not only has this treatment afforded chromosomes to be repositioned but has also restored the machinery that controls their rapid movement upon serum removal. This machinery contains nuclear myosin 1β, whose distribution is also restored after farnesyltransferase inhibitor treatment of HGPS cells. CONCLUSIONS: This study not only progresses the understanding of genome behavior in HGPS cells but demonstrates that interphase chromosome movement requires processed lamin A.This work was funded by an ORSAS award and the Brunel Progeria Research Fund
    corecore