171 research outputs found

    Teleportation in an indivisible quantum system

    Full text link
    Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.Comment: 4 pages, 1 figure, 1 tabl

    Bidirectional imperfect quantum teleportation with a single Bell state

    Full text link
    We present a bidirectional modification of the standard one-qubit teleportation protocol, where both Alice and Bob transfer noisy versions of their qubit states to each other by using single Bell state and auxiliary (trigger) qubits. Three schemes are considered: the first where the actions of parties are governed by two independent quantum random triggers, the second with single random trigger, and the third as a mixture of the first two. We calculate the fidelities of teleportation for all schemes and find a condition on correlation between trigger qubits in the mixed scheme which allows us to overcome the classical fidelity boundary of 2/3. We apply the Choi-Jamiolkowski isomorphism to the quantum channels obtained in order to investigate an interplay between their ability to transfer the information, entanglement-breaking property, and auxiliary classical communication needed to form correlations between trigger qubits. The suggested scheme for bidirectional teleportation can be realized by using current experimental tools.Comment: 8 pages, 4 figures; published versio

    Symmetric blind information reconciliation and hash-function-based verification for quantum key distribution

    Full text link
    We consider an information reconciliation protocol for quantum key distribution (QKD). In order to correct down the error rate, we suggest a method, which is based on symmetric blind information reconciliation for the low-density parity-check (LDPC) codes. We develop a subsequent verification protocol with the use of ϵ\epsilon-universal hash functions, which allows verifying the identity between the keys with a certain probability.Comment: 4 pages; 1 figure; published versio

    Exploring postselection-induced quantum phenomena with the two-time tensor formalism

    Full text link
    Here we present the two-time tensor formalism unifying in a general manner the standard quantum mechanical formalism with no postselection and the time-symmetrized two-state (density) vector formalism, which deals with postselected states. In the proposed approach, a quantum particle's state, called a two-time tensor, is equivalent to a joined state of two particles propagating in opposite time directions. For a general two-time tensor, we derive outcome probabilities of generalized measurements, as well as mean and weak values of Hermitian observables. We also show how the obtained expressions reduce to known ones in the special cases of no postselection and generalized two-state (density) vectors. Then we develop tomography protocols based on mutually unbiased bases (MUB) and symmetric informationally complete positive operator-valued measure (SIC-POVM), allowing experimental reconstruction of an unknown single qubit two-time tensor. Finally, we employ the developed techniques for experimental tracking of qubit's time-reversal journey in a quantum teleportation protocol realized with a cloud accessible noisy superconducting quantum processor. The obtained results justify an existence of postselection-induced qubit's proper time-arrow, which is different from the time-arrow of a classical observer, and demonstrate capabilities of the two-time tensor formalism for exploring quantum phenomena brought forth by a postselection in the presence of noise.Comment: 13 pages, 7 figure

    Post-processing procedure for industrial quantum key distribution systems

    Full text link
    We present algorithmic solutions aimed on post-processing for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of a classical public communication channel is also considered.Comment: 5 pages; presented at the 3rd International School and Conference "Saint-Petersburg OPEN 2016" (Saint-Petersburg, March 28-30, 2016
    corecore