39 research outputs found

    Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM

    Get PDF
    The surface topography of red blood cells (RBCs) was investigated under nearphysiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but noninvasive attachment of the cells. Using tappingmode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circularshaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane

    AFM imaging of functionalized double-walled carbon nanotubes

    Get PDF
    We present a comparative study of several non-covalent approaches to disperse, debundle and noncovalently functionalize double-walled carbon nanotubes (DWNTs). We investigated the ability of bovine serum albumin (BSA), phospholipids grafted onto amine-terminated polyethylene glycol (PLPEG2000-NH2), as well as a combination thereof, to coat purified DWNTs. Topographical imaging with the atomic force microscope (AFM) was used to assess the coating of individual DWNTs and the degree of debundling and dispersion. Topographical images showed that functionalized DWNTs are better separated and less aggregated than pristine DWNTs and that the different coating methods differ in their abilities to successfully debundle and disperse DWNTs. Height profiles indicated an increase in the diameter of DWNTs depending on the functionalization method and revealed adsorption of single molecules onto the nanotubes. Biofunctionalization of the DWNT surface was achieved by coating DWNTs with biotinylated BSA, providing for biospecific binding of streptavidin in a simple incubation step. Finally, biotin-BSA-functionalized DWNTs were immobilized on an avidin layer via the specific avidin–biotin interaction

    AFM imaging of functionalized carbon nanotubes on biological membranes

    Get PDF
    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging

    Outline of Synthesis of Cognitive and Socio-cultural Foundations of Scientific Knowledge Evolution in Research Programs of Western Philosophy of Science

    Get PDF
    The article analyses the development of cognitive sociology of science, in the object field of which connection of cognitive and social structures of science is traced. The role of context in scientific knowledge formation is defined. It is stated that the basis for development of research program of cognitive sociology of science appeared to be reconsideration of the standard concept of science as a complex of gnoseological, epistemological and methodological interpretations of nature and morphology of the produced scientific knowledge, methods for its explanation and scientificity ideals. The difference between "strong" and «weak» varieties of scientific knowledge evolution, developed in western philosophy of science, is considered. "Social studies of science" are reviewed as a form of social constructivism and relativism, exhibiting their specific nature in macro-analytical and micro- analytical strategies of scientific knowledge evolution analysis. The thesis that multidimensionality of science cannot be adequately interpreted focusing only on conceptual history of science is proved

    Nondestructive imaging of atomically thin nanostructures buried in silicon

    Get PDF
    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers.ISSN:2375-254

    Dynamic force microscopy for imaging of viruses under physiological conditions

    Get PDF
    Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized

    Local characterization of ferromagnetic resonance in bulk and patterned magnetic materials using scanning microwave microscopy

    Get PDF
    We have demonstrated the capabilities of the scanning microwave microscopy (SMM) technique for measuring ferromagnetic resonance (FMR) spectra in nanometric areas of magnetic samples. The technique is evaluated using three different samples, including a yttrium iron garnet (YIG) polycrystalline bulk sample and a thick YIG film grown by liquid phase epitaxy (LPE). Patterned permalloy (Py) micromagnetic dots have been characterized to assess the performance for imaging applications of the technique, measuring the variation of the magnetic properties of the sample along its surface. The proposed technique may pave the way for the development of high spatially resolved mapping of magnetostatic modes in different nanomagnetic and micromagnetic structures
    corecore