20 research outputs found
Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
The anomalous magnetic moment of the negative muon has been measured to a
precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient
Synchrotron. This result is based on data collected in 2001, and is over an
order of magnitude more precise than the previous measurement of the negative
muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the
first uncertainty is statistical and the second is sytematic, is consistend
with previous measurements of the anomaly for the positive and negative muon.
The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10}
(0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to
reflect referee comments. Text further revised to reflect additional referee
comments and a corrected Fig. 3 replaces the older versio
The MEG detector for μ+→e+γ decay search
The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay mu(+) -> e(+)gamma by using one of the most intense continuous mu(+) beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus
Search for the lepton flavour violating decay mu(+) -> e(+) gamma with the full dataset of the MEG experiment
The final results of the search for the lepton flavour violating decay μ+→e+γ based on the full dataset collected by the MEG experiment at the Paul Scherrer Institut in the period 2009–2013 and totalling 7.5×1014 stopped muons on target are presented. No significant excess of events is observed in the dataset with respect to the expected background and a new upper limit on the branching ratio of this decay of B(μ+→e+γ)<4.2×10−13 (90 % confidence level) is established, which represents the most stringent limit on the existence of this decay to date
Radial magnetic field measurements with a Hall probe device in the muon (g-2) storage ring magnet at BNL
A Hall probe device has been built to measure the radial component of the magnetic field in the muon (g-2) storage ring at Brookhaven National Laboratory. The ultraprecise (g-2) magnet provides a dominantly vertical magnetic field of about 1.45 T. In order to limit the vertical shift of the muon orbit, the average radial field component should be no more than 5 x 10(-5) of, the vertical field. Our measurements with the Hall probe device achieved an accuracy of 1 x 10(-5). which is one of the most precise measurements with Hall probes. This provides adequate accuracy for shimming and control of the radial field. (C) 2001 Elsevier Science B.V. All rights reserved
A sensitive search for a muon electric dipole moment
We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10(-24) e . cm in both statistics and systematics. This will make the sensitivity of the EDM experiment to non-standard physics better than the sensitivity of the present muon g-2 experiment, assuming the CP violating phase of the probed physics is of order one. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.(1,2) As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field
Recent results from the BNL g-2 experiment
The status of the muon g - 2 experiment at the AGS facility of Brookhaven National Laboratory is discussed. Data obtained in 1999 with positive muons has been analyzed and published. The final data set contained 0.95 x 10(9) events and had an accuracy of 1.3ppm. Approximately four times more data with positive muons and three times more data with negative muons were obtained in 2000 and 2001, respectively. These data were obtained with a more uniform magnetic field and with different storage ring tunes. An accuracy of the order of 0.5ppm is anticipated
Final report of the E821 muon anomalous magnetic moment measurement at BNL
We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positive and negative muons, were used to deduce a(mu)(Expt)=11659208.0(5.4)(3.3)x10(-10), where the statistical and systematic uncertainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold improvement compared to previous measurements at CERN. The standard model value for a(mu) includes contributions from virtual QED, weak, and hadronic processes. While the QED processes account for most of the anomaly, the largest theoretical uncertainty, approximate to 0.55 ppm, is associated with first-order hadronic vacuum polarization. Present standard model evaluations, based on e(+)e(-) hadronic cross sections, lie 2.2-2.7 standard deviations below the experimental result.</p