23,450 research outputs found
On using Multiple Quality Link Metrics with Destination Sequenced Distance Vector Protocol for Wireless Multi-Hop Networks
In this paper, we compare and analyze performance of five quality link
metrics forWireless Multi-hop Networks (WMhNs). The metrics are based on loss
probability measurements; ETX, ETT, InvETX, ML and MD, in a distance vector
routing protocol; DSDV. Among these selected metrics, we have implemented ML,
MD, InvETX and ETT in DSDV which are previously implemented with different
protocols; ML, MD, InvETX are implemented with OLSR, while ETT is implemented
in MR-LQSR. For our comparison, we have selected Throughput, Normalized Routing
Load (NRL) and End-to-End Delay (E2ED) as performance parameters. Finally, we
deduce that InvETX due to low computational burden and link asymmetry
measurement outperforms among all metrics
On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks
In Wireless Multi-hop Networks (WMhNs), routing protocols with energy
efficient and delay reduction techniques are needed to fulfill users demands.
In this paper, we present Linear Programming models (LP_models) to assess and
enhance reactive routing protocols. To practically examine constraints of
respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It
is deduced from analytical simulations of LP_models in MATLAB that quick route
repair reduces routing latency and optimizations of retransmission attempts
results efficient energy utilization. To provide quick repair, we enhance AODV
and DSR. To practically examine the efficiency of enhanced protocols in
different scenarios of WMhNs, we conduct simulations using NS- 2. From
simulation results, enhanced DSR and AODV achieve efficient output by
optimizing routing latencies and routing load in terms of retransmission
attempts
HEER: Hybrid Energy Efficient Reactive Protocol for Wireless Sensor Networks
Wireless Sensor Networks (WSNs) consist of numerous sensors which send sensed
data to base station. Energy conservation is an important issue for sensor
nodes as they have limited power.Many routing protocols have been proposed
earlier for energy efficiency of both homogeneous and heterogeneous
environments. We can prolong our stability and network lifetime by reducing our
energy consumption. In this research paper, we propose a protocol designed for
the characteristics of a reactive homogeneous WSNs, HEER (Hybrid Energy
Efficient Reactive) protocol. In HEER, Cluster Head(CH) selection is based on
the ratio of residual energy of node and average energy of network. Moreover,
to conserve more energy, we introduce Hard Threshold (HT) and Soft Threshold
(ST). Finally, simulations show that our protocol has not only prolonged the
network lifetime but also significantly increased stability period.Comment: 2nd IEEE Saudi International Electronics, Communications and
Photonics Conference (SIECPC 13), 2013, Riyadh, Saudi Arabi
- …