19 research outputs found
Advances in Mathematical Modeling of Gas-Phase Olefin Polymerization
Mathematical modeling of olefin polymerization processes has advanced significantly, driven by factors such as the need for higher-quality end products and more environmentally-friendly processes. The modeling studies have had a wide scope, from reactant and catalyst characterization and polymer synthesis to model validation with plant data. This article reviews mathematical models developed for olefin polymerization processes. Coordination and free-radical mechanisms occurring in different types of reactors, such as fluidized bed reactor (FBR), horizontal-stirred-bed reactor (HSBR), vertical-stirred-bed reactor (VSBR), and tubular reactor are reviewed. A guideline for the development of mathematical models of gas-phase olefin polymerization processes is presented
Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia
There is increasing clinical and molecular evidence for the role of hormones and specifically estrogen and its receptor in schizophrenia. A selective estrogen receptor modulator, raloxifene, stimulates estrogen-like activity in brain and can improve cognition in older adults. The present study tested the extent to which adjunctive raloxifene treatment improved cognition and reduced symptoms in young to middle-age men and women with schizophrenia. Ninety-eight patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited into a dual-site, thirteen-week, randomized, double-blind, placebocontrolled, crossover trial of adjunctive raloxifene treatment in addition to their usual antipsychotic medications. Symptom severity and cognition in the domains of working memory, attention/processing speed, language and verbal memory were assessed at baseline, 6 and 13 weeks. Analyses of the initial 6-week phase of the study using a parallel groups design (with 39 patients receiving placebo and 40 receiving raloxifene) revealed that participants receiving adjunctive raloxifene treatment showed significant improvement relative to placebo in memory and attention/processing speed. There was no reduction in symptom severity with treatment compared with placebo. There were significant carryover effects, suggesting some cognitive benefits are sustained even after raloxifene withdrawal. Analysis of the 13-week crossover data revealed significant improvement with raloxifene only in attention/processing speed. This is the first study to show that daily, oral adjunctive raloxifene treatment at 120 mg per day has beneficial effects on attention/processing speed and memory for both men and women with schizophrenia. Thus, raloxifene may be useful as an adjunctive treatment for cognitive deficits associated with schizophrenia.TW Weickert, D Weinberg, R Lenroot, SV Catts, R Wells, A Vercammen, M O, Donnell, C Galletly, D Liu, R Balzan, B Short, D Pellen, J Curtis, VJ Carr, J Kulkarni, PR Schofield and CS Weicker
The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment—Sources, Risks, Biodegradation
Recently, the increased use of monocyclic
non-steroidal anti-inflammatory drugs has resulted in
their presence in the environment. This may have
potential negative effects on living organisms. The
biotransformation mechanisms of monocyclic nonsteroidal
anti-inflammatory drugs in the human body
and in other mammals occur by hydroxylation and
conjugation with glycine or glucuronic acid.
Biotransformation/biodegradation of monocyclic
non-steroidal anti-inflammatory drugs in the environment
may be caused by fungal or bacterial microorganisms.
Salicylic acid derivatives are degraded by
catechol or gentisate as intermediates which are
cleaved by dioxygenases. The key intermediate of
the paracetamol degradation pathways is hydroquinone.
Sometimes, after hydrolysis of this drug, 4-
aminophenol is formed, which is a dead-end metabolite.
Ibuprofen is metabolized by hydroxylation or
activation with CoA, resulting in the formation of
isobutylocatechol. The aim of this work is to attempt
to summarize the knowledge about environmental risk
connected with the presence of over-the-counter antiinflammatory
drugs, their sources and the biotransformation
and/or biodegradation pathways of these
drugs