20 research outputs found

    The effect of stepping down combination therapy on airway hyperresponsiveness to mannitol

    Get PDF
    SummaryRationaleControversy exists about the safety of long acting beta2-agonist (LABA) treatment, in particular in children. Combination therapy with a LABA and an inhaled corticosteroid (ICS) is prescribed to children with moderate asthma and can be stepped down by withdrawal of the LABA when asthma is well controlled.ObjectiveTo analyze the effect of stepping down from LABA/ICS combination therapy to monotherapy with the same dose of ICS on the airway response to mannitol in asthmatic children.Methods17 children, aged 12–17 years, with clinically stable asthma, receiving combination therapy, were analyzed in this observational prospective open-label study. Children performed a mannitol challenge at baseline and 30±4 days after their medication was stepped down to ICS monotherapy. The changes in the provoking dose of mannitol to cause a 15% fall in FEV1 (PD15), response-dose ratio and recovery time following a short acting beta2-agonist to ≥95% of baseline FEV1 were assessed.ResultsMannitol PD15 and response-dose ratio did not significantly change after stepping down. The recovery time following a short acting beta2-agonist to ≥95% of baseline FEV1 was significantly shorter (p=0.01) after the withdrawal of the LABA.ConclusionsIn short-term follow-up, stepping down clinically stable asthmatic children from combination therapy to monotherapy with an ICS does not change airway hyperresponsiveness (AHR) to mannitol but does shorten recovery time to baseline lung function following a rescue short acting beta2-agonist

    Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways

    Get PDF
    The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus.</p

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore