1,778 research outputs found

    A Consistent Prescription for Combining Perturbative Calculations and Parton Showers in Case of Associated Z b anti-b Hadroproduction

    Full text link
    This paper presents the method of combining parton shower formalism with perturbative calculations (matrix elements) in form of a Monte-Carlo algorithm for the process g g -> Z b anti-b,consistenlty including the heavy quark masses and overlap removal.Comment: accepted by JHEP, revised according to suggestions from JHEP refere

    Prospects for Observing an Invisibly Decaying Higgs Boson in the t anti-t H Production at the LHC

    Full text link
    The prospects for observing an invisibly decaying Higgs boson in the t anti-t H production at LHC are discussed. An isolated lepton, reconstructed hadronic top-quark decay, two identified b-jets and large missing transverse energy are proposed as the final state signature for event selection. Only the Standard Model backgrounds are taken into account. It is shown that the t anti-t Z, t anti-t W, b anti-b Z and b anti-b W backgrounds can individually be suppressed below the signal expectation. The dominant source of background remains the t anti-t production. The key for observability will be an experimental selection which allows further suppression of the contributions from the t anti-t events with one of the top-quarks decaying into a tau lepton. Depending on the details of the final analysis, an excess of the signal events above the Standard Model background of about 10% to 100% can be achieved in the mass range m_H= 100-200 GeV.Comment: Final version as accepted by EPJ

    Improved Phase Space Treatment of Massive Multi-Particle Final States

    Full text link
    In this paper the revised Kajantie-Byckling approach and improved phase space sampling techniques for the massive multi-particle final states are presented. The application of the developed procedures to the processes representative for LHC physics indicates the possibility of a substantial simplification of multi-particle phase space sampling while retaining a respectable weight variance reduction and unweighing efficiencies in the event generation process.Comment: Minor stilistic changes, submitted to EPJ

    Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics

    Full text link
    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.Comment: 49 pages Latex. Compiled by the Working Group on Quantum ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV Colliders'', Les Houches, France, May 2003. To appear in the proceeding

    QCD corrections to electroweak l nu_l jj and l^+ l^- jj production

    Full text link
    The production of W or Z bosons in association with two jets is an important background to the Higgs boson search in vector-boson fusion at the LHC. The purely electroweak component of this background is dominated by vector-boson fusion, which exhibits kinematic distributions very similar to the Higgs boson signal. We consider the next-to-leading order QCD corrections to the electroweak production of l nu_l jj and l^+ l^- jj events at the LHC, within typical vector-boson fusion cuts. We show that the QCD corrections are modest, increasing the total cross sections by about 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions.Comment: 26 pages, 10 figures. PRD final version. One reference corrected, introduction expande

    Probing for Invisible Higgs Decays with Global Fits

    Full text link
    We demonstrate by performing a global fit on Higgs signal strength data that large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs particle are currently consistent with the experimental hints of a scalar resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests that can be used to improve the prospects of experimentally discovering the existence of a Br_{inv} with future data are proposed. These tests are based on the combination of all visible channel Higgs signal strengths, and allow us to examine the required reduction in experimental and theoretical errors in this data that would allow a more significantly bounded invisible branching ratio to be experimentally supported. We examine in some detail how our conclusions and method are affected when a scalar resonance at this mass scale has couplings deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after Eq.

    The QCD/SM Working Group: Summary Report

    Full text link
    This Report documents the results obtained by the Working Group on Quantum ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV Colliders'', Les Houches, France, 21 May - 1 June 2001. The account of uncertainties in Parton Distribution Functions is reviewed. Progresses in the description of multiparton final states at Next-to-Leading Order and the extension of calculations for precision QCD observables beyond this order are summarized. Various issues concerning the relevance of resummation for observables at TeV colliders is examined. Improvements to algorithms of jet reconstruction are discussed and predictions for diphoton and photon pi-zero production at the LHC are made for kinematic variables of interest regarding searches for a Higgs boson decaying into two photons. Finally, several improvements implemented in Monte-Carlo event generators are documented

    Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP

    Get PDF
    An experimental study of the normalized three-jet rate of b quark events with respect to light quarks events (light= \ell \equiv u,d,s) has been performed using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are found to agree with theoretical predictions treating mass corrections at next-to-leading order. Measurements of the b quark mass have also been performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data are found to be better described when using the running mass. The measurement yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12 (theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise measurement of the b mass derived from a high energy process. When compared to other b mass determinations by experiments at lower energy scales, this value agrees with the prediction of Quantum Chromodynamics for the energy evolution of the running mass. The mass measurement is equivalent to a test of the flavour independence of the strong coupling constant with an accuracy of 7 permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
    corecore