2 research outputs found

    Isolation and structure elucidation of Cystargamide, a lipopeptide from Kitasatospora cystarginea

    No full text
    A new lipopeptide, cystargamide (1) was isolated from the fermentation broth of the actinomycete Kitasatospora cystarginea. The bacterial strain was selected from a set of 12 Kitasatospora spp. using a secondary metabolomics approach combining liquid chromatography/high-resolution mass spectrometry (LC-HRMS) with principal component analysis (PCA). Cystargamide (1) was purified by reversed-phase HPLC, and the structure elucidation was achieved by interpreting mass spectrometry and NMR data. Cystargamide (1) contains rare structural features including a 5-hydroxy tryptophan residue and a 2,3-epoxydecanoyl fatty acid group

    Evaluation of pseudopteroxazole and pseudopterosin derivatives against Mycobacterium tuberculosis and other pathogens

    No full text
    Pseudopterosins and pseudopteroxazole are intriguing marine natural products that possess notable antimicrobial activity with a commensurate lack of cytotoxicity. New semi-synthetic pseudopteroxazoles, pseudopteroquinoxalines and pseudopterosin congeners along with simple synthetic mimics of the terpene skeleton were synthesized. In order to build structure-activity relationships, a set of 29 new and previously reported compounds was assessed for in vitro antimicrobial and cytotoxic activities. A number of congeners exhibited antimicrobial activity against a range of Gram-positive bacteria including Mycobacterium tuberculosis H₃₇Rv, with four displaying notable antitubercular activity against both replicating and non-replicating persistent forms of M. tuberculosis. One new semi-synthetic compound, 21-((1H-imidazol-5-yl)methyl)-pseudopteroxazole (7a), was more potent than the natural products pseudopterosin and pseudopteroxazole and exhibited equipotent activity against both replicating and non-replicating persistent forms of M.tuberculosis with a near absence of in vitro cytotoxicity. Pseudopteroxazole also exhibited activity against strains of M. tuberculosis H₃₇Rv resistant to six clinically used antibiotics
    corecore