69 research outputs found

    Contextualising Apartheid at the End of Empire: Repression, ‘Development’ and the Bantustans

    Get PDF
    This article examines the global dynamics of late colonialism and how these informed South African apartheid. More specifically, it locates the programmes of mass relocation and bantustan ‘self-government’ that characterised apartheid after 1959 in relation to three key dimensions. Firstly, the article explores the global circulation of idioms of ‘development’ and trusteeship in the first half of the twentieth century and its significance in shaping segregationist policy; secondly, it situates bantustan ‘selfgovernment’ in relation to the history of decolonisation and the partitions and federations that emerged as late colonial solutions; and, thirdly, it locates the tightening of rural village planning in the bantustans after 1960 in relation to the elaboration of anti-colonial liberation struggles, repressive southern African settler politics and the Cold War. It argues that, far from developing policies that were at odds with the global ‘wind of change’, South African apartheid during the 1960s and 1970s reflected much that was characteristic about late colonial strategy

    The overlap between vascular disease and Alzheimer’s disease - lessons from pathology

    Get PDF

    In Vivo

    No full text

    Flurbiprofen Derivatives in Alzheimer's Disease: Synthesis, Pharmacokinetic and Biological Assessment of Lipoamino Acid Prodrugs.

    No full text
    Flurbiprofen (FLU) lipophilic prodrugs with lipoamino acids (LAA) 6a- e were synthesized for brain delivery. Chemical and plasmatic stability of prodrugs 6a- e as well as pharmacokinetic distribution studies for the prodrugs 6b and 6d were carried out. FLU prodrugs 6a- e were compared to the parent drug for their ability to inhibit binding of [F-18]FDDNP to in vitro formed beta-amyloid protein (Abeta fibrils). FLU-LAA conjugates showed a typical prodrug stability profile, being stable in PBS at pH 7.4 and releasing the active drug in plasma. Compound 6d yielded a slow accumulation of FLU in the brain. In the in vitro inhibition assay, all prodrugs except for the prodrug with the longest alkyl side chain ( 6e) were effective as inhibitors of [F-18]FDDNP binding to Abeta fibrils with EC50 values in the 10-300 nM range. The different brain accumulation kinetics shown by FLU and its LAA conjugate 6d suggested a possible slow-releasing activity of FLU by these prodrugs in the brain or a differential pharmacological effect deserving further, detailed studies on their biodistribution and pharmacological profile

    Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice.

    No full text
    Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization. We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney. This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. The importance of sodium-coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine-18 labelled glucose molecular imaging probes and non-invasive positron emission tomography (PET) imaging. The probes were: α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), a substrate for SGLTs; 4-deoxy-4-[F-18]-fluoro-d-glucose (4-FDG), a substrate for SGLTs and GLUTs; and 2-deoxy-2-[F-18]-fluoro-d-glucose (2-FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild-type, Sglt1(-/-) , Sglt2(-/-) and Glut2(-/-) mice and their dynamic whole-body distribution was determined using microPET. The distribution of 2-FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2-FDG in Glut2(-/-) mice, apart from a reduction in the rate of uptake into liver. The major differences between Me-4FDG and 2-FDG were that Me-4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me-4FDG in Sglt1(-/-) and Sglt2(-/-) mice. However, Me-4FDG was not reabsorbed in the kidney in Glut2(-/-) mice. There were no differences in Me-4FDG uptake into the heart of wild-type, Sglt1(-/-) and Sglt2(-/-) mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me-4FDG from the glomerular filtrate in wild-type mice and the absence of reabsorption in the kidney in Glut2(-/-) mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule
    corecore