10 research outputs found

    Multi-stakeholder collaboration yields valuable data for cetacean conservation in Gamba, Gabon

    No full text
    Private industry, the Government of Gabon and two international NGOs collaborated to conduct marine surveys off the coast of Gabon, Central Africa. Surveys addressed multiple objectives of surveillance and monitoring, the documentation of the distribution of and threats to the marine megafauna, and capacity-building among government agents and local early-career scientists. During 22 days of survey effort over a two-year period, observers documented humpback whales Megaptera novaeangliae, bottlenose dolphins Tursiops truncatus, Atlantic humpback dolphins Sousa teuszii and common dolphins Delphinus delphis. Humpback whale presence was limited to the months of July to November. Bottlenose dolphins were present year-round and photo-identification of individuals indicated a closed, resident population, with an abundance estimate of 118 (CV = 21.6%, 95% CI 78–180). Small open-decked fishing vessels with gillnets were observed concentrated around river mouths within 2 km of shore, while commercial trawlers were at least 10 km offshore; all were confirmed to be registered and legal. Observations of marine turtles, flocks of marine birds, and floating logs and other debris were sparse. This multi-stakeholder collaboration to conduct a marine survey can serve as an effective model by which funding and logistic support from private industry paired with technical expertise from NGOs and academic institutions can benefit marine and coastal conservation.Keywords: fishing pressure, marine survey, Megaptera novaeangliae, photo-identification, relative abundance, Sousa teuszii, stakeholder engagement, Tursiops truncatu

    A DNA fingerprint probe from Mycosphaerella graminicola identifies an active transposable element

    No full text
    DNA fingerprinting has been used extensively to characterize populations of Mycosphaerella graminicola, the Septoria tritici blotch pathogen of wheat. The highly polymorphic DNA fingerprints of Mycosphaerella graminicola were assumed to reflect the action of transposable elements. However, there was no direct evidence to support that conclusion. To test the transposable element hypothesis, the DNA fingerprint probe pSTL70 was sequenced, along with three other clones from a subgenomic library that hybridized with pSTL70. Analysis of these sequences revealed that pSTL70 contains the 3′ end of a reverse transcriptase sequence plus 29- and 79-bp direct repeats. These are characteristics of transposable elements identified in other organisms. Southern analyses indicated that either the direct-repeat or reverse-transcriptase sequences by themselves essentially duplicated the original DNA fingerprint pattern, but other portions of pSTL70 contained single-copy DNA. Analysis of 60 progeny from a sexual cross between two Dutch isolates of Mycosphaerella graminicola identified several new bands that were not present in the parents. Thus, the putative transposable element probably is active during meiosis. Tests of single-spore isolates revealed gains or losses of one or more DNA fingerprint bands in 4 out of 10 asexual lines derived from isolate IPO94269. Therefore, DNA fingerprint patterns produced by the putative transposable element were capable of changes during asexual reproduction of this isolate. Probe pSTL70 did not hybridize at high stringency to genomic DNAs from other fungi related to Septoria and Mycosphaerella. These results indicate that the DNA fingerprint probe pSTL70 most likely identifies a transposable element in Mycosphaerella graminicola that may have been acquired recently, and appears to be active during both sexual and asexual reproduction

    Cloning and analysis of the mating type idiomorphs from the barley pathogen Septoria passerinii

    No full text
    The genus Septoria contains more than 1000 species of plant pathogenic fungi, most of which have no known sexual stage. Species of Septoria without a known sexual stage could be recent derivatives of sexual species that have lost the ability to mate. To test this hypothesis, the mating-type region of S. passerinii, a species with no known sexual stage, was cloned, sequenced, and compared to that of its close relative S. tritici (sexual stage: Mycosphaerella graminicola). Both of the S. passerinii mating-type idiomorphs were approximately 3 kb in size and contained a single reading frame interrupted by one (MAT-2) or two (MAT-1) putative introns. The putative products of MAT-1 and MAT-2 are characterized by alpha-box and high-mobility-group sequences, respectively, similar to those in the mating-type genes of M. graminicola and other fungi. The mating-type genes of S. passerinii and M. graminicola are evolving rapidly, approximately ten times faster than the internal transcribed spacer region of the ribosomal DNA, and are not closely related to those from Cochliobolus or other loculoascomycetes in the order Pleosporales. Therefore, the class Loculoascomycetes may be polyphyletic. Furthermore, differences between the phylogenetic trees may indicate separate evolutionary histories for the MAT-1 and MAT-2 idiomorphs. A three-primer multiplex-PCR technique was developed that allowed rapid identification of the mating types of isolates of S. passerinii. Both mating types were present in approximately equal frequencies and often on the same leaf in fields in Minnesota and North Dakota. Analyses with isozyme and random amplified polymorphic DNA markers revealed that each isolate had a unique genotype. The common occurrence of both mating types on the same leaf and the high levels of genotypic diversity indicate that S. passerinii is almost certainly not an asexual derivative of a sexual fungus. Instead, sexual reproduction probably plays an integral role in the life cycle of S. passerinii and may be much more important than previously believed in this (and possibly other) "asexual" species of Septori

    Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola

    No full text
    A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphism by PCR on five field isolates of diverse origin, including the parents of the standard M. graminicola mapping population. Seventy-seven of the 99 primer pairs generated an easily scored banding pattern and 51 were polymorphic, with up to four alleles per locus, among the isolates tested. Among these 51 loci, 23 were polymorphic between the parents of the mapping population. Twenty-one of these as well as two previously published microsatellite loci were positioned on the existing genetic linkage map of M. graminicola on 13 of the 24 linkage groups. Most (66%) of the primer pairs also amplified bands in the closely related barley pathogen Septoria passerinii, but only six were polymorphic among four isolates tested. A subset of the primer pairs also revealed polymorphisms when tested with DNA from the related banana black leaf streak (Black Sigatoka) pathogen, M. fijiensis. The EST database provided an excellent source of new, highly polymorphic microsatellite markers that can be multiplexed for high-throughput genetic analyses of M. graminicola and related specie

    Discovery of a functional Mycosphaerella teleomorph in the presumed asexual barley pathogen Septoria passerinii

    No full text
    We studied the possibility of a teleomorph associated with the genotypically diverse septoria speckled leaf blotch (SSLB) pathogen of barley, Septoria passerinii. A teleomorph in the genus Mycosphaerella had been predicted previously based on phylogenetic analyses. This prediction was tested with experiments in the Netherlands and the United States by co-inoculating isolates with opposite mating types onto susceptible barley cultivars and monitoring leaves for sexual structures and for the discharge of ascospores. Characterization of putative hybrid progeny by both molecular (AFLP, RAPD, mating type, and ITS sequencing) and phenotypic analyses confirmed that a Mycosphaerella teleomorph of S. passerinii has been discovered approximately 125 years after the description of the anamorph. Progeny had recombinant genotypes of the molecular alleles present in the parents, and the identities of representative progeny isolates as S. passerinii were confirmed by ITS sequencing. A previously unknown sexual cycle explains the high degree of genetic variation among isolates found in nature. The experimental identification of a predicted teleomorph for S. passerinii indicates that cryptic sexual cycles may be common for many other "asexual" fungi with high levels of genotypic diversity.

    A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic linkage map of Mycosphaerella graminicola, the Septoria tritici leaf blotch pathogen of wheat

    No full text
    An F-1 mapping population of the septoria tritici blotch pathogen of wheat, Mycosphaerella graminicola, was generated by crossing the two Dutch field isolates IPO323 and IPO94269. AFLP and RAPD marker data sets were combined to produce a high-density genetic linkage map. The final map contained 223 AFLP and 57 RAPD markers, plus the biological traits mating type and avirulence, in 23 linkage groups spanning 1216 cM. Many AFLPs and some RAPD markers were clustered. When markers were reduced to 1 per cluster, 229 unique positions were mapped, with an average distance of 5.3 cM between markers. Because M. graminicola probably has 17 or 18 chromosomes, at least 5 of the 23 linkage groups probably will need to be combined with others once additional markers are added to the map. This was confirmed by pulsed-field gel analysis; probes derived from 2 of the smallest linkage groups hybridized to two of the largest chromosome-sized bands, revealing a discrepancy between physical and genetic distance. The utility of the map was demonstrated by identifying molecular markers tightly linked to two genes of biological interest, mating type and avirulence. Bulked segregant analysis was used to identify additional molecular markers closely linked to these traits. This is the first genetic linkage map for any species in the genus Mycosphaerella or the family Mycosphaerellaceae

    Tryptophan intake and tryptophan losses in hemodialysis patients : A balance study

    Get PDF
    Tryptophan depletion is common in hemodialysis patients. The cause of this depletion remains largely unknown, but reduced nutritional tryptophan intake, losses during dialysis or an increased catabolism due to an inflammatory state are likely contributors. Currently, little is known about tryptophan homeostasis in hemodialysis patients. We assessed dietary tryptophan intake, measured plasma tryptophan during dialysis, and measured the combined urinary and dialysate excretion of tryptophan in 40 hemodialysis patients (66 ± 15 years and 68% male). Patients had low tryptophan concentrations (27 ± 9 µmol/L) before dialysis. Mean dietary tryptophan intake was 4454 ± 1149 µmol/24 h. Mean urinary tryptophan excretion was 15.0 ± 12.3 µmol/24 h, dialysate excretion was 209 ± 67 µmol/24 h and combined excretion was 219 ± 66 µmol/24 h, indicating only 5% of dietary tryptophan intake was excreted. No associations were found between plasma tryptophan concentration and tryptophan intake, plasma kynurenine/tryptophan ratio or inflammatory markers. During dialysis, mean plasma tryptophan concentration increased 16% to 31 ± 8 µmol/L. Intradialytic increase in plasma tryptophan was associated with a lower risk of mortality, independent of age, sex and dialysis vintage (HR: 0.87 [0.76–0.99]; P = 0.04). Tryptophan intake was well above the dietary recommendations and, although tryptophan was removed during dialysis, mean plasma tryptophan increased during dialysis. The cause of this phenomenon is unknown, but it appears to be protective.</p

    Discovery and fine mapping of serum protein loci through transethnic meta-analysis

    Get PDF
    Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 x 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMDS-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease
    corecore