32,868 research outputs found
Determination of physical and chemical states of lubricants in concentrated contacts, part 3
Solid and liquid thin films were analyzed by infrared emission Fourier microspectrophotometry. The apparatus used is a commercial absorption instrument modified to an emission instrument, comprising a rotating polarizing device, a miniature blackbody temperature reference adjustable in temperature and radiant flux and a microscope lens with a high numerical aperture in the entrance system for increased sensitivity and resolution. Studies of lubricant behavior in a simulated ball bearing showed the alignment of the fluid molecules in the Hertzian area. Polyphenyl ether plus 1% 1,1,2-trichloroethane (TCE) required lower shear rates for the same degree of alignment than without TCE. The experiment was run with 440 C stainless steel balls coated with TiN, a chemically inert material. In both cases, the alignment was strongly influenced by the presence of TCE. The results showed (1) the dependence of alignment of fluid molecules on flow and not on adsorption at metallic surfaces, (2) phase separation between lubricant and additive under high pressure which results in two phase flow and (3) reduction in traction of torque transmitting (traction) fluids
Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO
We report the spontaneous formation of a plasma from a gas of cold Rydberg
molecules. Double-resonant laser excitation promotes nitric oxide, cooled to 1
K in a seeded supersonic molecular beam, to single Rydberg states extending as
deep as 80 cm below the lowest ionization threshold. The density of
excited molecules in the illuminated volume is as high as 1 x 10
cm. This population evolves to produce prompt free electrons and a
durable cold plasma of electrons and intact NO ions.Comment: 4 pages (two column) 3 figures; smaller figure files, corrected typo
Chemiluminescent Tags for Tracking Insect Movement in Darkness: Application to Moth Photo-Orientation
The flight tracks of Manduca sexta (Lepidoptera: Sphingidae) flying toward a 5 watt incandescent light bulb were recorded under low light conditions with the aid of a camera-mounted photomultiplier and a glowing marker technique. Small felt pads bearing a chemiluminescent (glowi maÂerial, Cyalume®, were affixed to the abdomens of free-flying moths. insects orienting to a dim incandescent bulb were easily visible to the naked eye and were clearly captured on videotape. On their initial approach to the light source, M. sexta were found to orient at a mean angle of -0.220 ± 2.70 (mean ± SEM). The speed of the initial approach flight (OA ± 0.03 m/s) was significantly faster than the speed immediately after passing the light (0.29 ± 0.02 m/s; t =6.4, PM. sexta initially fly approximately at a light source and only after passing it, do they engage in circular flight around the source. M. sexta flight to lights does not entirely match any paths predicted by several light orientation mechanisms, including the commonly invoked light compass theory
A magnetic lens for cold atoms controlled by a rf field
We report on a new type of magnetic lens that focuses atomic clouds using a
static inhomogeneous magnetic field in combination with a radio-frequency
field. The experimental study is performed with a cloud of cold cesium atoms.
The rf field adiabatically deforms the magnetic potential of a coil and
therefore changes its focusing properties. The focal length can be tuned
precisely by changing the rf frequency value. Depending on the rf antenna
position relative to the DC magnetic profile, the focal length of the atomic
lens can be either decreased or increased by the rf field
Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact
Infrared emission spectra and related measurements were obtained from an operating ball/plate elastohydrodynamic (EHD) sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as lubricant and 1 percent of 1,1,2-trichloroethane (TCE) as a surface-probing additive. TiN is chemically inert and its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN coated balls were higher. Nevertheless, no scuffing was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN coated balls and always when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichrosim of these bands were related to shear rates and inlet conditions of the EHD contact
- …