39 research outputs found

    Fast-Ion-Diagnostics for CHS Experiment

    Get PDF
    Fast-ion-diagnostics have played an important role in investigating issues related to fast ion orbits and fast-ion-driven MHD instabilities in CHS experiments. The fast-ion diagnostics employed in CHS are reviewed and experimentally obtained knowledge is summarized

    Isotope effects on particle transport in the Compact Helical System

    Get PDF
    The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8  ×  1019 m−3 to 4  ×  1019 m−3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density  2.5  ×  1019 m−3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime

    Calibrations of Fast Ion Flux Measurement Using a Hybrid Directional Probe

    Get PDF
    A hybrid directional probe method both “thermal and Langmuir probe” was applied for fast ion measure- ments in the compact helical system. In order to obtain absolute values of fast ion density and power density, a calibration of the probe was performed using neutral hydrogen beam and a mixture beam of hydrogen and proton, of which beam current and energy were controlled. The conversion factor from temperature increase of the probe head to local power density and secondary electron emission yield was obtained. The density of fast ions was obtained by directional thermal probe (DTP) method inside the last closed flux surface, and the density ratio was nFastIon/nBulkPlasma = 2.7 × 10?3 at r/a = 0.9. The observation of the directional Langmuir probe (DLP) method is consistent with the DTP results

    Radial Transport Characteristics of Fast Ions Due to Energetic-Particle Modes inside the Last Closed-Flux Surface in the Compact Helical System

    Get PDF
    The internal behavior of fast ions interacting with magnetohydrodynamic bursts excited by energetic ions has been experimentally investigated in the compact helical system. The resonant convective oscillation of fast ions was identified inside the last closed-flux surface during an energetic-particle mode (EPM) burst. The phase difference between the fast-ion oscillation and the EPM, indicating the coupling strength between them, remains a certain value during the EPM burst and drives an anomalous transport of fast ions

    Isotope Effect on Energy Confinement Time and Thermal Transport in Neutral-Beam-Heated Stallarator-Heliotron

    Get PDF
    The isotope effect on energy confinement time and thermal transport has been investigated for plasmas confined by a stellarator-heliotron magnetic field. This is the first detailed assessment of an isotope effect in a stellarator heliotron. Hydrogen and deuterium plasmas heated by neutral beam injection on the Large Helical Device have exhibited no significant dependence on the isotope mass in thermal energy confinement time, which is not consistent with the simple gyro-Bohm model. A comparison of thermal diffusivity for dimensionally similar hydrogen and deuterium plasmas in terms of the gyroradius, collisionality, and thermal pressure has clearly shown robust confinement improvement in deuterium to compensate for the unfavorable mass dependence predicted by the gyro-Bohm model

    The isotope effect on impurities and bulk ion particle transport in the Large Helical Device

    Get PDF
    The isotope effect on impurities and bulk ion particle transport is investigated by using the deuterium, hydrogen, and isotope mixture plasma in the Large Helical Device (LHD). A clear isotope effect is observed in the impurity transport but not the bulk ion transport. The isotope effects on impurity transport and ion heat transport are observed as a primary and a secondary effect, respectively, in the plasma with an internal transport barrier (ITB). In the LHD, an ion ITB is always transient because the impurity hole triggered by the increase of ion temperature gradient causes the enhancement of ion heat transport and gradually terminates the ion ITB. The formation of an impurity hole becomes slower in the deuterium (D) plasma than the hydrogen (H) plasma. This primary isotope effect on impurity transport contributes the longer sustainment of the ion ITB state because the low ion thermal diffusivity can be sustained as long as the normalized carbon impurity gradient R/Ln,c, where , is above the critical value (~−5). Therefore, the longer sustainment of the ITB state in the deuterium plasma is considered to be a secondary isotope effect due to the mitigation of the impurity hole. The radial profile of H and D ion density is measured using bulk charge exchange spectroscopy inside the isotope mixture plasma. The decay time of H ion density after the H-pellet injection and the decay time of D ion density after D-pellet injection are almost identical, which demonstrates that there is no significant isotope effect on ion particle transport

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region
    corecore