7,329 research outputs found
Slow carbon and nutrient accumulation in trees established following fire exclusion in the southwestern United States.
Increasing tree density that followed fire exclusion after the 1880s in the southwestern United States may have also altered nutrient cycles and led to a carbon (C) sink that constitutes a significant component of the U.S. C budget. Yet, empirical data quantifying century-scale changes in C or nutrients due to fire exclusion are rare. We used tree-ring reconstructions of stand structure from five ponderosa pine-dominated sites from across northern Arizona to compare live tree C, nitrogen (N), and phosphorus (P) storage between the 1880s and 1990s. Live tree biomass in the 1990s contained up to three times more C, N, and P than in 1880s. However, the increase in C storage was smaller than values used in recent U.S. C budgets. Furthermore, trees that had established prior to the 1880s accounted for a large fraction (28-66%) of the C, N, and P stored in contemporary stands. Overall, our century-scale analysis revealed that forests of the 1880s were on a trajectory to accumulate C and nutrients in trees even in the absence of fire exclusion, either because growing conditions became more favorable after the 1880s or because forests in the 1880s included age or size cohorts poised for accelerated growth. These results may lead to a reduction in the C sink attributed to fire exclusion, and they refine our understanding of reference conditions for restoration management of fire-prone forests
Halo ratio from ground based all-sky imaging
© Author(s) 2019.The halo ratio (HR) is a quantitative measure characterizing the occurrence of the 22 halo peak associated with cirrus. We propose to obtain it from an approximation to the scattering phase function (SPF) derived from allsky imaging. Ground-based fisheye cameras are used to retrieve the SPF by implementing the necessary image transformations and corrections. These consist of geometric camera characterization by utilizing positions of known stars in a camera image, transforming the images from the zenithcentred to the light-source-centred system of coordinates and correcting for the air mass and for vignetting, the latter using independent measurements from a sun photometer. The SPF is then determined by averaging the image brightness over the azimuth angle and the HR by calculating the ratio of the SPF at two scattering angles in the vicinity of the 22° halo peak. In variance from previous suggestions we select these angles to be 20 and 23°, on the basis of our observations. HR time series have been obtained under various cloud conditions, including halo cirrus, non-halo cirrus and scattered cumuli. While the HR measured in this way is found to be sensitive to the halo status of cirrus, showing values typically > 1 under halo-producing clouds, similar HR values, mostly artefacts associated with bright cloud edges, can also be occasionally observed under scattered cumuli. Given that the HR is an ice cloud characteristic, a separate cirrus detection algorithm is necessary to screen out non-ice clouds before deriving reliable HR statistics. Here we propose utilizing sky brightness temperature from infrared radiometry: Both its absolute value and the magnitude of fluctuations obtained through detrended fluctuation analysis. The brightness temperature data permit the detection of cirrus in most but not all instances.Peer reviewe
Grover's search with faults on some marked elements
Grover's algorithm is a quantum query algorithm solving the unstructured
search problem of size using queries. It provides a
significant speed-up over any classical algorithm \cite{Gro96}.
The running time of the algorithm, however, is very sensitive to errors in
queries. It is known that if query may fail (report all marked elements as
unmarked) the algorithm needs queries to find a marked element
\cite{RS08}. \cite{AB+13} have proved the same result for the model where each
marked element has its own probability to be reported as unmarked.
We study the behavior of Grover's algorithm in the model where the search
space contains both faulty and non-faulty marked elements. We show that in this
setting it is indeed possible to find one of non-faulty marked items in
queries.
We also analyze the limiting behavior of the algorithm for a large number of
steps and show the existence and the structure of limiting state .Comment: 17 pages, 6 figure
The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up
In classical problem solving, there is of course correlation between the
selection of the problem on the part of Bob (the problem setter) and that of
the solution on the part of Alice (the problem solver). In quantum problem
solving, this correlation becomes quantum. This means that Alice contributes to
selecting 50% of the information that specifies the problem. As the solution is
a function of the problem, this gives to Alice advanced knowledge of 50% of the
information that specifies the solution. Both the quadratic and exponential
speed ups are explained by the fact that quantum algorithms start from this
advanced knowledge.Comment: Earlier version submitted to QIP 2011. Further clarified section 1,
"Outline of the argument", submitted to Phys Rev A, 16 page
The Baylis-Hillman entrĂ©e to heterocyclic systems â the Rhodes contribution
This review focuses on applications of the Baylis-Hillman reaction in the synthesis of various heterocyclic products, which include indolizines, chromenes, thiochromenes, coumarins and quinolines. Attention is also given to the mechanistic implications and the elaboration of various products to afford compounds with medicinal potential
Designer ligands : the search for metal ion selectivity
The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers
""Of molecules and men"" : inaugural lecture delivered at Rhodes University
Inaugural lecture delivered at Rhodes UniversityRhodes University Libraries (Digitisation
The Small-Is-Very-Small Principle
The central result of this paper is the small-is-very-small principle for
restricted sequential theories. The principle says roughly that whenever the
given theory shows that a property has a small witness, i.e. a witness in every
definable cut, then it shows that the property has a very small witness: i.e. a
witness below a given standard number.
We draw various consequences from the central result. For example (in rough
formulations): (i) Every restricted, recursively enumerable sequential theory
has a finitely axiomatized extension that is conservative w.r.t. formulas of
complexity . (ii) Every sequential model has, for any , an extension
that is elementary for formulas of complexity , in which the
intersection of all definable cuts is the natural numbers. (iii) We have
reflection for -sentences with sufficiently small witness in any
consistent restricted theory . (iv) Suppose is recursively enumerable
and sequential. Suppose further that every recursively enumerable and
sequential that locally inteprets , globally interprets . Then,
is mutually globally interpretable with a finitely axiomatized sequential
theory.
The paper contains some careful groundwork developing partial satisfaction
predicates in sequential theories for the complexity measure depth of
quantifier alternations
A light scattering instrument for investigating cloud ice microcrystal morphology
We describe an optical scattering instrument designed to assess the shapes and sizes of microscopic atmospheric cloud particles, especially the smallest ice crystals that can profoundly affect cloud processes and radiative properties yet cannot be seen clearly using in situ cloud particle imaging probes. The new instrument captures high-resolution spatial light scattering patterns from individual particles down to ~1 ÎŒm in size passing through a laser beam. Its significance lies in the ability of these patterns to provide morphological data for particle sizes well below the optical resolution limits of current probes
- âŠ