3,066 research outputs found
The portrait of Malin 2: a case study of a giant low surface brightness galaxy
The low surface brightness disc galaxy Malin2 challenges the standard theory
of galaxy evolution by its enormous total mass ~2 10^12 Ms which must have been
formed without recent major merger events. The aim of our work is to create a
coherent picture of this exotic object by using the new optical multicolor
photometric and spectroscopic observations at Apache Point Observatory as well
as archival datasets from Gemini and wide-field surveys. We performed the
Malin2 mass modelling, estimated the contribution of the host dark halo and
found that it had acquired its low central density and the huge isothermal
sphere core radius before the disc subsystem was formed. Our spectroscopic data
analysis reveals complex kinematics of stars and gas in the very inner region.
We measured the oxygen abundance in several clumps and concluded that the gas
metallicity decreases from the solar value in the centre to a half of that at
20-30 kpc. We found a small satellite and measured its mass (1/500 of the host
galaxy) and gas metallicity. One of the unique properties of Malin2 turned to
be the apparent imbalance of ISM: the molecular gas is in excess with respect
to the atomic gas for given values of the gas equilibrium turbulent pressure.
We explain this imbalance by the presence of a significant portion of the dark
gas not observable in CO and the Hi 21 cm lines. We also show that the
depletion time of the observed molecular gas traced by CO is nearly the same as
in normal galaxies. Our modelling of the UV-to-optical spectral energy
distribution favours the exponentially declined SFH over a single-burst
scenario. We argue that the massive and rarefied dark halo which had formed
before the disc component well describes all the observed properties of Malin2
and there is no need to assume additional catastrophic scenarios proposed
previously to explain the origin of giant LSB galaxies. [Abbreviated]Comment: 17 pages, 10 figures, accepted for publication in MNRA
KrioBlastTM as a new technology of hyper-fast cryopreservation of cells and tissues. Part 2. Kinetic vitrification of human pluripotent stem cells and spermatozoa
Pilot experiments on kinetic vitrification of human pluripotent stem cells and spermatozoa using a KrioBlastTM-2 without penetrating cryoprotectants have shown high survival of cells (75-85% in both cases
KrioBlastTM as a new technology of hyper-fast cryopreservation of cells and tissues. Part 1. Thermodynamic aspects and potential applications in reproductive and regenerative medicine
Kinetic (dynamic) vitrification is a promising trend in cryopreservation of biological materials because it allows avoiding the formation of lethal intracellular ice and minimizes harmful effects of highly toxic penetrating cryoprotectants. A uniform cooling protocol and the same instruments can be used for practically all types of cell
A complex stellar line-of-sight velocity distribution in the lenticular galaxy NGC 524
We present the detailed study of the stellar and gaseous kinematics of the
luminous early-type galaxy NGC 524 derived from the long-slit spectroscopic
observations obtained with the Russian 6-m telescope and the IFU data from the
SAURON survey. The stellar line-of-sight velocity distribution (LOSVD) of NGC
524 exhibits strong asymmetry. We performed the comprehensive analysis of the
LOSVD using two complementary approaches implemented on top of the nbursts full
spectral fitting technique, (a) a nonparametric LOSVD recovery and (b) a
parametric recovery of two Gaussian kinematical components having different
stellar populations. We discuss the origin of the complex stellar LOSVD of NGC
524.Comment: 6 pages, 4 figures, proceedings of 8th SCSLSA, to appear in Baltic
Astronom
- …