13 research outputs found

    LC-ESI-MS/MS Identification of Biologically Active Phenolics in Different Extracts of Alchemilla acutiloba Opiz

    No full text
    Liquid chromatography electrospray ionization tandem mass spectrometric (LC-ESI-MS/MS) qualitative and quantitative analysis of different extracts from the aerial parts and roots of Alchemilla acutiloba led to the identification of phenolic acids and flavonoids. To the best of our knowledge, isorhamnetin 3-glucoside, kaempferol 3-rutinoside, narcissoside, naringenin 7-glucoside, 3-O-methylquercetin, naringenin, eriodictyol, rhamnetin, and isorhamnetin were described for the first time in Alchemilla genus. In addition, the antioxidant, anti-inflammatory and cytotoxic activity of all extracts were evaluated. The results clearly showed that among analyzed extracts, the butanol extract of the aerial parts exhibited the highest biological activity comparable with the positive controls used

    Phenolic Composition and Antioxidant Activity of Alchemilla Species

    No full text
    The genus Alchemilla, belonging to the Rosaceae family, is a rich source of interesting secondary metabolites, including mainly flavonoids, tannins, and phenolic acids, which display a variety of biological activities, such as anti-inflammatory, antimicrobial, and antioxidant. Alchemilla species are used in traditional medicine for treatment of acute diarrhea, wounds, dysmenorrhea, and menorrhagia. In this review, we focus on the phenolic compound composition and antioxidative activity of Alchemilla species. We can assume that phytomedicine and natural products chemistry are of significant importance due to the fact that extract combinations with various bioactive compounds possess the activity to protect the human body rather than disturb damaging factors

    The Anti-Acne Potential and Chemical Composition of Two Cultivated <i>Cotoneaster</i> Species

    No full text
    In light of current knowledge on the role of reactive oxygen species and other oxidants in skin diseases, it is clear that oxidative stress facilitates inflammation and is an important factor involved in skin diseases, i.e., acne. Taking into consideration the fact that some Cotoneaster plants are valuable curatives in skin diseases in traditional Asian medicine, we assumed that thus far untested species C. hsingshangensis and C. hissaricus may be a source of substances used in skin diseases. The aim of this study was to evaluate the antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities of their various extracts. LC-MS analysis revealed the presence of 47 compounds (flavonoids, phenolic acids, coumarins, sphingolipids, carbohydrates), while GC-MS procedure allowed for the identification of 42 constituents (sugar derivatives, phytosterols, fatty acids, and their esters). The diethyl ether fraction of C. hsingshangensis (CHs-2) exhibited great ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, cyclooxygenase-2, lipoxygenase, and hyaluronidase. Moreover, it had the most promising power against microaerobic Gram-positive strains, and importantly, it was non-toxic toward normal skin fibroblasts. Taking into account the value of the calculated therapeutic index (>10), it is worth noting that CHs-2 can be subjected to in vivo study and constitutes a promising anti-acne agent

    LC-ESI-MS/MS Polyphenolic Profile and In Vitro Study of Cosmetic Potential of <i>Aerva lanata</i> (L.) Juss. Herb Extracts

    No full text
    The aim of the present study was to investigate the phenolic composition and the biological properties of different Aerva lanata (L). Juss. herb extracts obtained with the use of accelerated solvent extraction (ASE), i.e., a green, ecological method, for cosmetic purposes. All samples exhibited high DPPH‱ (9.17–119.85 mg TE/g) and ABTS‱+ (9.90–107.58 mg TE/g) scavenging activity. The extracts exhibited considerable anti-lipoxygenase (EC50 between 1.14 mg/mL and 3.73 mg/mL) and anti-xanthine oxidase (EC50 between 1.28 mg/mL and 3.72 mg/mL) activities, moderate chelating activity (EC50 between 1.58 mg/mL and 5.30 mg/mL), and high antioxidant potential in the ORAC assay (0.36–3.84 mM TE/g). Changes in the polyphenol profile of the analysed samples depending on the solvent and temperature used for the extraction were determined with the liquid chromatography/electrospray mass spectrometry (LC-ESI-MS/MS) method. Twenty-one phenolic compounds, including flavonoids and phenolic acids, were detected and quantified. It was shown that tiliroside was one of the main phenolic metabolites in the A. lanata (L.) Juss. herb., which may suggest that this compound may be largely responsible for the observed anti-inflammatory activity of the extracts. In addition, the studied extracts exhibited promising skin-related (anti-tyrosinase, anti-elastase, anti-collagenase, and anti-hyaluronidase) activity. This study showed that Aerva lanata (L.) Juss. contains high amounts of phenolic compounds, including tiliroside, and has good skin-related activities. Therefore, the plant may be interesting as a novel source of bioactive agents for cosmetic industries

    Anticancer Effects of Propolis Extracts Obtained Using the Cold Separation Method on Breast Cancer Cell Lines

    No full text
    Propolis and its extracts show a wide spectrum of biological activity. Due to the necessity to use high temperatures and high polarity in the eluent, the obtained extracts are depleted of active compounds. The new, cold separation method allows obtaining a qualitatively better product containing a number of chemical compounds absent in extracts obtained using high-temperature methods. The purpose of our study was to evaluate the biological activity of propolis extracts produced with the cold separation method in four female breast cancer cell lines: MDA-MB-231, MDA-MB-468, MCF-7, and T-47D. The results of the breast cancer cell viability were obtained using the MTT test. Propolis extracts at 75 and 80% showed similar cytotoxicity against cancer cells, with the polyphenol fraction 75% being slightly more negative for cells. Propolis extracts at concentrations of 50, 75, and 100 ”g/mL significantly reduced cell viability. With the exception of the MDA-MB-231 line, cell viability was also decreased after incubation with a concentration of 25 ”g/mL. Our results suggest that propolis extracts obtained with the cold separation method may be considered as promising compounds for the production of health-promoting supplements

    Anticancer Effects of Propolis Extracts Obtained with the Cold Separation Method on PC-3 and DU-145 Prostate Cancer Cell Lines

    No full text
    Plant extracts are increasingly tested for their biological activity and interactions with neoplastic cells. One of such sources of biologically active substances is propolis. This product has been known for thousands of years and is widely used in alternative, folk medicine. Articles describing its effects on the metabolism and cell signaling pathways of neoplastic cells derived from different organs are also published more and more frequently. The purpose of our study was to evaluate the biological activity of propolis extract produced with the cold separation method into hormone-dependent and hormone-independent prostate cancer cell lines. In our study, the propolis extracts showed at least an inhibitory effect on the growth of PC-3 and DU-145 neoplastic cells. Our results suggest that propolis extracts obtained with the cold separation method may be considered as promising compounds for the production of health-promoting supplements

    Can Extracts from the Leaves and Fruits of the Cotoneaster Species Be Considered Promising Anti-Acne Agents?

    No full text
    This study aimed to evaluate the phenolic profile and biological activity of the extracts from the leaves and fruits of Cotoneaster nebrodensis and Cotoneaster roseus. Considering that miscellaneous species of Cotoneaster are thought to be healing in traditional Asian medicine, we assumed that this uninvestigated species may reveal significant therapeutic properties. Here, we report the simultaneous assessment of chemical composition as well as biological activities (antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties) of tested species. Complementary LC-MS analysis revealed that polyphenols (especially flavonoids and proanthocyanidins) are the overriding phytochemicals with the greatest significance in tested biological activities. In vitro chemical tests considering biological activities revealed that obtained results showed different values depending on concentration, extraction solvent as well as phenolic content. Biological assays demonstrated that the investigated extracts possessed antibacterial properties and were not cytotoxic toward normal skin fibroblasts. Given the obtained results, we concluded that knowledge of the chemical composition and biological activities of investigated species are important to achieve a better understanding of the utilization of these plants in traditional medicine and be useful for further research in their application to treat various diseases, such as skin disorders

    Do Curdlan Hydrogels Improved with Bioactive Compounds from Hop Exhibit Beneficial Properties for Skin Wound Healing?

    No full text
    Chronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration. The aim of this study was to establish whether curdlan-based biomaterials modified with hop compounds can be considered as promising candidates for the promotion of skin wound healing. The resultant biomaterials were subjected to an evaluation of their structural, physicochemical, and biological in vitro and in vivo properties. The conducted physicochemical analyses confirmed the incorporation of bioactive compounds (crude extract or xanthohumol) into the curdlan matrix. It was found that the curdlan-based biomaterials improved with low concentrations of hop compounds possessing satisfactory hydrophilicity, wettability, porosity, and absorption capacities. In vitro, tests showed that these biomaterials were non-cytotoxic, did not inhibit the proliferation of skin fibroblasts, and had the ability to inhibit the production of pro-inflammatory interleukin-6 by human macrophages stimulated with lipopolysaccharide. Moreover, in vivo studies showed that these biomaterials were biocompatible and could promote the regeneration process after injury (study on Danio rerio larvae model). Thus, it is worth emphasizing that this is the first paper demonstrating that a biomaterial based on a natural biopolymer (curdlan) improved with hop compounds may have biomedical potential, especially in the context of skin wound healing and regeneration

    Enhancing In Vitro Production of the Tree Fern Cyathea delgadii and Modifying Secondary Metabolite Profiles by LED Lighting

    No full text
    The tree ferns are an important component of tropical forests. In view of this, the enhancement of in vitro production of these plants is needed. Thus, the effect of different light-emitting diodes (LEDs) as well as control fluorescent lamps (Fl) and a 3-week-long period of darkness at the beginning of in vitro culture on micropropagation of the tree fern Cyathea delgadii Sternb. was analysed. Moreover, the photosynthetic pigment content and secondary metabolite profiles were estimated. The period of darkness contributed to a high production of somatic embryo-derived sporophytes and a low production of gametophytes. The formation of new sporophytes was stimulated by RBY (35% red, 15% blue, and 50% yellow) and B (100% blue) lights when the stipe explants or whole young sporophytes were used in the culture, respectively. The elongation of the roots and leaves was stimulated by RBfR light (35% red, 15% blue, and 50% far red), while root production increased under RBY light. The RB (70% red and 30% blue) and B lights stimulated the accumulation of chlorophyll better than Fl light. The most abundant metabolite found in the plant extracts was trans-5-O-caffeoylquinic acid (1.013 &micro;g/mg of dry weight). The extract obtained from plants growing in a greenhouse had the best antioxidant activity

    Biotechnology of the Tree Fern Cyathea smithii (J.D. Hooker; Soft Tree Fern, Katote) II Cell Suspension Culture: Focusing on Structure and Physiology in the Presence of 2,4-D and BAP

    No full text
    The aim of our research was to describe the structure and growth potential of a cell suspension of the tree fern Cyathea smithii. Experiments were performed on an established cell suspension with &frac12; MS medium supplemented with 9.05 &micro;M 2,4-D + 0.88 &micro;M BAP. In the experiments, attention was paid to the microscopic description of cell suspension, evaluation of cell growth dependent on the initial mass of cells and organic carbon source in the medium, the length of the passage, the content of one selected flavonoid in the post-culture medium, nuclear DNA content, ethylene production, and the antimicrobial value of the extract. For a better understanding of the cell changes that occurred during the culture of the suspension, the following structures of the cell were observed: nucleus, lipid bodies, tannin deposits, starch grains, cell walls, primary lamina, and the filaments of metabolites released into the medium. The nuclear DNA content (acriflavine-Feulgen staining) of cell aggregates distinctly indicated a lack of changes in the sporophytic origin of the cultured cell suspension. The physiological activity of the suspension was found to be high because of kinetics, intensive production of ethylene, and quercetin production. The microbiological studies suggested that the cell suspension possessed a bactericidal character against microaerobic Gram-positive bacteria. A sample of the cell suspension showed bacteriostatic activity against aerobic bacteria
    corecore