23 research outputs found

    The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic

    No full text
    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect

    The Role of Probiotics in Cancer Prevention

    No full text
    The gut microbiome can play important role in maintaining homeostasis in the human body. An imbalance in the gut microbiome can lead to pro-inflammatory immune responses and the initiation of disease processes, including cancer. The research results prove some strains of probiotics by modulating intestinal microbiota and immune response can be used for cancer prevention or/and as adjuvant treatment during anticancer chemotherapy. This review presents the latest advances in research into the effectiveness of probiotics in the prevention and treatment support of cancer. The described issues concern to the anticancer activity of probiotic microorganisms and their metabolites. In addition, we described the potential mechanisms of probiotic chemoprevention and the advisability of using probiotics

    The role of probiotics, prebiotics and synbiotics in animal nutrition

    No full text
    Abstract Along with the intensive development of methods of livestock breeding, breeders’ expectations are growing concerning feed additives that would guarantee such results as accelerating growth rate, protection of health from pathogenic infections and improvement of other production parameters such as: absorption of feed and quality of meat, milk, eggs. The main reason for their application would be a strive to achieve some beneficial effects comparable to those of antibiotic-based growth stimulators, banned on 01 January 2006. High hopes are being associated with the use of probiotics, prebiotics and synbiotics. Used mainly for maintenance of the equilibrium of the intestinal microbiota of livestock, they turn out to be an effective method in fight against pathogens posing a threat for both animals and consumers. This paper discusses definitions of probiotics, prebiotics and synbiotics. Criteria that have to be met by those kinds of formulas are also presented. The paper offers a list of the most commonly used probiotics and prebiotics and some examples of their combinations in synbiotic formulas used in animal feeding. Examples of available study results on the effect of probiotics, prebiotics and synbiotics on animal health are also summarised

    Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Pathogens: A Review

    No full text
    Zoonoses are diseases transmitted from animals to humans, posing a great threat to the health and life of people all over the world. According to WHO estimations, 600 million cases of diseases caused by contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens, excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food production areas and may remain there in the form of a biofilm covering the surfaces of machines and equipment. A common occurrence of microbes in food products, as well as their improper or careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild, sometimes flu-like, but they also may be accompanied by severe complications, some even fatal. The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis, yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general characteristics of pathogens, virulence factors, and reservoirs

    Effects of Probiotics, Prebiotics, and Synbiotics on Human Health

    No full text
    The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented

    Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials

    No full text
    In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject

    The In Vitro Analysis of Prebiotics to Be Used as a Component of a Synbiotic Preparation

    No full text
    Prebiotics are food components that are selectively fermented by beneficial microbiota and which confer a health benefit. The aim of the study was to select a prebiotic for the chosen probiotic strains to create a synbiotic. The impact of prebiotics (inulin, maltodextrin, corn starch, β-glucan, and apple pectin) on five Lactobacillus spp. strains’ growth and metabolites synthesis (lactic, acetic, propionic, and butyric acids, ethanol, and acetaldehyde) was tested by the plate count method and by high-performance liquid chromatography, respectively. Moreover, the differences in the ratio of D(−) and L(+) lactate isomers produced by Lactobacillus spp., as well as variations in the probiotics’ enzymatic profiles associated with the prebiotic used for cultivation, were determined with a Megazyme rapid assay kit and API® ZYM assay, accordingly. Finally, the influence of the carbon source (prebiotic) used on the antagonistic activity of the probiotic strains towards pathogenic bacteria, such as Salmonella spp. or Listeria monocytogenes was analyzed in the co-cultures. The results showed that the growth, metabolic profile, and antagonistic activity of the probiotics towards selected pathogens were the most favorable when 2% (w/v) of inulin was used. Therefore, the combination of inulin with selected probiotics is a promising synbiotic mixture

    Probiotic preparation reduces faecal water genotoxicity and cytotoxicity in chickens fed ochratoxin A contaminated feed (in vivo study)

    No full text
    The aim of the present study was to assess the genotoxicity and cytotoxicity of the faecal water of chickens fed ochratoxin A (OTA) contaminated feed with and without probiotic preparation. The study was performed on 20 healthy female Ross broiler chickens divided into 4 groups: control chickens - fed with non-supplemented feed; PP chickens - fed feed supplemented with the probiotic preparation; OTA chickens - fed feed contaminated with 1 mg per kg of OTA; OTA + PP chickens - fed feed contaminated with 1 mg per kg of OTA and supplemented with the probiotic preparation. Faecal water samples were collected on the 35th day of life of chickens from each group. Genotoxicity was measured using the comet assay, and cytotoxicity by means of MTT tests. Mean DNA damage, measured as the percentage of DNA in the tails of the comets, was 8.50 ± 1.10 for chickens fed OTA at 1 mg/kg and 6.41 ± 0.67 in the controls. The supplementation of feed with the probiotic preparation decreased the extent of DNA damage to 4.74 ± 0.78. In the control group of chickens the average cytotoxicity was 38.5 ± 0.5 (in MTT), while in the probiotic preparation group (PP group) it was 31.8 ± 0.7 (in MTT). After supplementation of the feed with the probiotic preparation, the genotoxicity and cytotoxicity were decreased in a statistically significant manner
    corecore