156 research outputs found

    A Far-infrared Characterization of 24 μm Selected Galaxies at 0 < z < 2.5 using Stacking at 70 μm and 160 μm in the COSMOS Field

    Get PDF
    We present a study of the average properties of luminous infrared galaxies detected directly at 24 μm in the COSMOS field using a median stacking analysis at 70 μm and 160 μm. Over 35,000 sources spanning 0 ≤ z ≤ 3 and 0.06 mJy ≤ S_(24) ≤ 3.0 mJy are stacked, divided into bins of both photometric redshift and 24 μm flux. We find no correlation of S_(70)/S_(24) flux density ratio with S_(24), but find that galaxies with higher S_(24) have a lower S_(160)/S_(24) flux density ratio. These observed ratios suggest that 24 μm selected galaxies have warmer spectral energy distributions (SEDs) at higher mid-IR fluxes, and therefore have a possible higher fraction of active galactic nuclei. Comparisons of the average S_(70)/S_(24) and S_(160)/S_(24) colors with various empirical templates and theoretical models show that the galaxies detected at 24 μm are consistent with "normal" star-forming galaxies and warm mid-IR galaxies such as Mrk 231, but inconsistent with heavily obscured galaxies such as Arp 220. We perform a χ^2 analysis to determine best-fit galactic model SEDs and total IR luminosities for each of our bins. We compare our results to previous methods of estimating L IR and find that previous methods show considerable agreement over the full redshift range, except for the brightest S_(24) sources, where they overpredict the bolometric IR luminosity at high redshift, most likely due to their warmer dust SED. We present a table that can be used as a more accurate and robust method for estimating bolometric infrared luminosity from 24 μm flux densities

    A controlled study of cold dust content in galaxies from z=0−2z=0-2

    Get PDF
    At z=1−3z=1-3, the formation of new stars is dominated by dusty galaxies whose far-IR emission indicates they contain colder dust than local galaxies of a similar luminosity. We explore the reasons for the evolving IR emission of similar galaxies over cosmic time using: 1) Local galaxies from GOALS (LIR=1011−1012 L⊙)(L_{\rm IR}=10^{11}-10^{12}\,L_\odot); 2) Galaxies at z∼0.1−0.5z\sim0.1-0.5 from the 5MUSES (LIR=1010−1012 L⊙L_{\rm IR}=10^{10}-10^{12}\,L_\odot); 3) IR luminous galaxies spanning z=0.5−3z=0.5-3 from GOODS and Spitzer xFLS (LIR>1011 L⊙L_{\rm IR}>10^{11}\,L_\odot). All samples have Spitzer mid-IR spectra, and Herschel and ground-based submillimeter imaging covering the full IR spectral energy distribution, allowing us to robustly measure LIRSFL_{\rm IR}^{\rm\scriptscriptstyle SF}, TdustT_{\rm dust}, and MdustM_{\rm dust} for every galaxy. Despite similar infrared luminosities, z>0.5z>0.5 dusty star forming galaxies have a factor of 5 higher dust masses and 5K colder temperatures. The increase in dust mass is linked with an increase in the gas fractions with redshift, and we do not observe a similar increase in stellar mass or star formation efficiency. L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}, a proxy for TdustT_{\rm dust}, is strongly correlated with LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} independently of redshift. We measure merger classification and galaxy size for a subsample, and there is no obvious correlation between these parameters and LIRSF/MdustL_{\rm IR}^{\rm \scriptscriptstyle SF}/M_{\rm dust} or L160SF/L70SFL_{160}^{\rm\scriptscriptstyle SF}/L_{70}^{\rm\scriptscriptstyle SF}. In dusty star forming galaxies, the change in LIRSF/MdustL_{\rm IR}^{\rm\scriptscriptstyle SF}/M_{\rm dust} can fully account for the observed colder dust temperatures, suggesting that any change in the spatial extent of the interstellar medium is a second order effect.Comment: Accepted for publication in ApJ. 21 pages, 11 figure

    The American Astronomical Society, find out more The Institute of Physics, find out more Where Do Quasar Hosts Lie with Respect to the Size–Mass Relation of Galaxies?

    Get PDF
    The evolution of the galaxy size–mass relation has been a puzzle for over a decade. High-redshift galaxies are significantly more compact than galaxies observed today at an equivalent mass, but how much of this apparent growth is driven by progenitor bias, minor mergers, secular processes, or feedback from active galactic nuclei (AGNs) is unclear. To help disentangle the physical mechanisms at work by addressing the latter, we study the size–Mstellar relation of 32 carefully selected broad-line AGN hosts at 1.2 \u3c z \u3c 1.7 (7.5 \u3c log MBH \u3c 8.5; Lbol/LEdd ≳ 0.1). Using the Hubble Space Telescope with multiband photometry and state-of-the-art modeling techniques, we measure half-light radii while accounting for uncertainties from subtracting bright central point sources. We find AGN hosts to have sizes ranging from ∼1 to 6 kpc at Mstellar ∼ (0.3–1) × 1011 M⊙. Thus, many hosts have intermediate sizes as compared to equal-mass star-forming and quiescent galaxies. While inconsistent with the idea that AGN feedback may induce an increase in galaxy sizes, this finding is consistent with hypotheses in which AGNs preferentially occur in systems with prior concentrated gas reservoirs, or are involved in a secular compaction processes perhaps responsible for building their bulges. If driven by minor mergers that do not grow central black holes as fast as they do bulge-like stellar structures, such a process would explain both the galaxy size–mass relation observed here and the evolution in the black hole–bulge mass relation described in a companion paper
    • …
    corecore