3,111 research outputs found

    Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains

    Get PDF
    It is well established that the solitary waves of FPU-type chains converge in the high-energy limit to traveling waves of the hard-sphere model. In this paper we establish improved asymptotic expressions for the wave profiles as well as an explicit formula for the wave speed. The key step in our approach is the derivation of an asymptotic ODE for the appropriately rescaled strain profile.Comment: revised version with corrected typos; 25 pages, several figure

    Coupling and braiding Majorana bound states in networks defined in proximitized two-dimensional electron gases

    Full text link
    Two-dimensional electron gases with strong spin-orbit coupling covered by a superconducting layer offer a flexible and potentially scalable platform for Majorana networks. We predict Majorana bound states (MBSs) to appear for experimentally achievable parameters and realistic gate potentials in two designs: either underneath a narrow stripe of a superconducting layer (S-stripes) or where a narrow stripe has been removed from a uniform layer (N-stripes). The coupling of the MBSs can be tuned for both types in a wide range (10 μ\mueV) using gates placed adjacent to the stripes. For both types, we numerically compute the local density of states for two parallel Majorana-stripe ends as well as Majorana trijunctions formed in a tuning-fork geometry. The MBS coupling between parallel Majorana stripes can be suppressed below 1 neV for potential barriers in the meV range for separations of about 200 nm. We further show that the MBS couplings in a trijunction can be gate-controlled in a range similar to the intra-stripe coupling while maintaining a sizable gap to the excited states (tens of μ\mueV). Altogether, this suggests that braiding can carried out on a time scale of 10-100 ns

    Distinguishing Majorana bound states from localized Andreev bound states by interferometry

    Full text link
    Experimental evidence for Majorana bound states (MBSs) is so far mainly based on the robustness of a zero-bias conductance peak. However, similar features can also arise due to Andreev bound states (ABSs) localized at the end of an island. We show that these two scenarios can be distinguished by an interferometry experiment based on embedding a Coulomb-blockaded island into an Aharonov-Bohm ring. For two ABSs, when the ground state is nearly degenerate, cotunneling can change the state of the island and interference is suppressed. By contrast, for two MBSs the ground state is nondegenerate and cotunneling has to preserve the island state, which leads to h/eh / e-periodic conductance oscillations with magnetic flux. Such interference setups can be realized with semiconducting nanowires or two-dimensional electron gases with proximity-induced superconductivity and may also be a useful spectroscopic tool for parity-flip mechanisms

    Time scales for Majorana manipulation using Coulomb blockade in gate-controlled superconducting nanowires

    Full text link
    We numerically compute the low-energy spectrum of a gate-controlled superconducting topological nanowire segmented into two islands, each Josephson-coupled to a bulk superconductor. This device may host two pairs of Majorana bound states and could provide a platform for testing Majorana fusion rules. We analyze the crossover between (i) a charge-dominated regime utilizable for initialization and readout of Majorana bound states, (ii) a single-island regime for dominating inter-island Majorana coupling, (iii) a Josephson-plasmon regime for large coupling to the bulk superconductors, and (iv) a regime of four Majorana bound states allowing for topologically protected Majorana manipulations. From the energy spectrum, we derive conservative estimates for the time scales of a fusion-rule testing protocol proposed recently [arXiv:1511.05153]. We also analyze the steps needed for basic Majorana braiding operations in branched nanowire structures
    corecore