66 research outputs found

    Cell sources for articular cartilage repair strategies: shifting from mono-cultures to co-cultures

    Get PDF
    The repair of articular cartilage is challenging due to the sparse native cell population combined with the avascular and aneural nature of the tissue. In recent years cartilage tissue engineering has shown great promise. As with all tissue engineering strategies, the possible therapeutic outcome is intimately linked with the used combination of cells, growth factors and biomaterials. However, the optimal combination has remained a controversial topic and no consensus has been reached. In consequence, much effort has been dedicated to further design, investigate and optimize cartilage repair strategies. Specifically, various research groups have performed intensive investigations attempting to identify the single most optimal cell source for articular cartilage repair strategies. However, recent findings indicate that not the heavily investigated mono cell source, but the less studied combinations of cell sources in co-culture might be more attractive for cartilage repair strategies. This review will give a comprehensive overview on the cell sources that have been investigated for articular cartilage repair strategies. In particular, the advantages and disadvantages of investigated cell sources are comprehensively discussed with emphasis on the potential of co-cultures in which benefits are combined while the disadvantages of single cell sources for cartilage repair are mitigated

    The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Get PDF
    Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint

    A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    Get PDF
    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment system through which nutrients can be supplied solely by diffusion from opposite sides of a tissue engineered construct. This design is based on the hypothesis that creating gradients of nutrients, growth factors and growth factor antagonists can aid in the generation of zonal tissue engineered cartilage. Computational modeling predicted that the design facilitates the creation of a biologically relevant glucose gradient. This was confirmed by quantitative glucose measurements in cartilage explants. In this system it is not only possible to create gradients of nutrients, but also of anabolic or catabolic factors. Therefore, the bioreactor design allows control over nutrient supply and mechanical stimulation useful for in vitro generation of cartilage constructs that can be used for the resurfacing of articulated joints or as a model for studying OA disease progression

    Hypoxia Inhibits Hypertrophic Differentiation and Endochondral Ossification in Explanted Tibiae

    Get PDF
    Purpose: Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself. Materials and Methods: Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion. Results: The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation. Conclusions: Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expressio

    Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    Get PDF
    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of polystyrene and poly(l-lactic acid) with different micro/nanotopographies were obtained from smooth surfaces using a simple phase-separation based method. Total protein was quantified and showed a less adsorption of bovine serum albumin onto rough surfaces as compared to smooth surfaces of the same material. The mouse osteoblastic MC3T3-E1 cell line and primary bovine articular chondrocytes were used to study cell attachment and proliferation. Cells attached and proliferate better in the smooth surfaces. The superhydrophobic surfaces allowed cells to adhere but inhibited their proliferation. This study indicates that surface wettability, rather than polymer type or the topography of the superhydrophobic surfaces, is a critical factor in determining cell behavior
    • …
    corecore