64 research outputs found

    Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen

    Get PDF
    To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%-30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic - minocycline, an antihypertensive drug - telmisartan, and a bisphosphonate - zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid - the MTZ Regimen - have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low drug cost. Four core observations support this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with nonmalignant macrophages or microglia to thrive;2) glioblastoma cells secrete MCP-1 to start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the recruitment cycle;3) increasing cytokine levels in the tumor environment generate further immunosuppression and tumor growth;and 4) MTZ regimen may impede MCP-1-driven processes, thereby interfering with glioblastoma growth

    Metabolic Reprogramming by c-MET Inhibition as a Targetable Vulnerability in Glioblastoma

    Full text link
    The elucidation of better treatments for solid tumors and especially malignant glial tumors is a priority. Better understanding of the molecular underpinnings of treatment response and resistance are critical determinants in the success for this endeavor. Recently, a battery of novel tools have surfaced that allow to interrogate tumor cell metabolism to more precise extent than this was possible in the earlier days. At the forefront of these developments are the extracellular flux and carbon tracing analyses. Through utilization of these techniques our group made the recent observation that acute and chronic c-MET inhibition drives fatty acid oxidation that in turn can be therapeutically targeted for drug combination therapies. Herein, we summarize and comment on some of our key findings related to this study

    The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy.

    Get PDF
    Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways ? RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E ? that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial

    Regression/eradication of gliomas in mice by a systemically-deliverable ATF5 dominant-negative peptide.

    Get PDF
    Malignant gliomas have poor prognosis and urgently require new therapies. Activating Transcription Factor 5 (ATF5) is highly expressed in gliomas, and interference with its expression/function precipitates targeted glioma cell apoptosis in vitro and in vivo. We designed a novel deliverable truncated-dominant-negative (d/n) form of ATF5 fused to a cell-penetrating domain (Pen-d/n-ATF5-RP) that can be intraperitoneally/subcutaneously administered to mice harboring malignant gliomas generated; (1) by PDGF-B/sh-p53 retroviral transformation of endogenous neural progenitor cells; and (2) by human U87-MG xenografts. In vitro Pen-d/n-ATF5-RP entered into glioma cells and triggered massive apoptosis. In vivo, subcutaneously-administered Pen-d/n-ATF5-RP passed the blood brain barrier, entered normal brain and tumor cells, and then caused rapid selective tumor cell death. MRI verified elimination of retrovirus-induced gliomas within 8-21 days. Histopathology revealed growth-suppression of intracerebral human U87-MG cells xenografts. For endogenous PDGF-B gliomas, there was no recurrence or mortality at 6-12 months versus 66% mortality in controls at 6 months. Necropsy and liver-kidney blood enzyme analysis revealed no adverse effects on brain or other tissues. Our findings thus identify Pen-d/n-ATF5-RP as a potential therapy for malignant gliomas

    Activation of LXR Receptors and Inhibition of TRAP1 Causes Synthetic Lethality in Solid Tumors

    Full text link
    Cholesterol is a pivotal factor for cancer cells to entertain their relentless growth. In this case, we provide a novel strategy to inhibit tumor growth by simultaneous activation of liver-X-receptors and interference with Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1). Informed by a transcriptomic and subsequent gene set enrichment analysis, we demonstrate that inhibition of TRAP1 results in suppression of the cholesterol synthesis pathway in stem-like and established glioblastoma (GBM) cells by destabilizing the transcription factor SREBP2. Notably, TRAP1 inhibition induced cell death, which was rescued by cholesterol and mevalonate. Activation of liver X receptor (LXR) by a clinically validated LXR agonist, LXR623, along with the TRAP1 inhibitor, gamitrinib (GTPP), results in synergistic reduction of tumor growth and cell death induction in a broad range of solid tumors, which is rescued by exogenous cholesterol. The LXR agonist and TRAP1 inhibitor mediated cell death is regulated at the level of Bcl-2 family proteins with an elevation of pro-apoptotic Noxa. Silencing of Noxa and its effector BAK attenuates cell death mediated by the combination treatment of LXR agonists and TRAP1 inhibition. Combined inhibition of TRAP1 and LXR agonists elicits a synergistic activation of the integrated stress response with an increase in activating transcription factor 4 (ATF4) driven by protein kinase RNA-like endoplasmic reticulum kinase (PERK). Silencing of ATF4 attenuates the increase of Noxa by using the combination treatment. Lastly, we demonstrate in patient-derived xenografts that the combination treatment of LXR623 and gamitrinib reduces tumor growth more potent than each compound. Taken together, these results suggest that TRAP1 inhibition and simultaneous activation of LXR might be a potent novel treatment strategy for solid malignancies

    Epigenetic Targeting of Mcl-1 Is Synthetically Lethal with Bcl-xL/Bcl-2 Inhibition in Model Systems of Glioblastoma

    Full text link
    Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM.We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction with features of apoptosis, including disruption of mitochondrial membrane potential followed by activation of caspases. Mechanistically, THZ1 elicited a profound disruption of the Mcl-1 enhancer region, leading to a sustained suppression of Mcl-1 transcript and protein levels, respectively. Mechanism experiments suggest involvement of Mcl-1 in the cell death elicited by the combination treatment. Finally, the combination treatment of ABT263 and THZ1 resulted in enhanced growth reduction of tumors without induction of detectable toxicity in two patient-derived xenograft models of GBM in vivo. Taken together, these findings suggest that combined epigenetic targeting of Mcl-1 along with Bcl-2/Bcl-xL is potentially therapeutically feasible
    • …
    corecore