101 research outputs found

    Antimicrobial activities of ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus

    Get PDF
    In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e., Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. All tested compounds showed antimicrobial effects against S. aureus, and almost all against E. coli and C. perfringens. For L. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest for S. aureus and the weakest for C. perfringens. For S. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results with S. aureus showed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. For E. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. For C. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought

    Interactions between Hydrolysable Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration Calorimetry

    Get PDF
    Isothermal titration calorimetry (ITC) was used to study the interactions between hydrolysable tannins (HTs) and lipid vesicles prepared from a phospholipid extract of Escherichia coli (E. coli). A group of 24 structurally different HTs was selected, and structural differences affecting their affinities to interact with lipid vesicles in aqueous buffered media were identified. In general, the interactions between HTs and lipid vesicles were exothermic in nature, and ITC as a technique functioned well in the screening of HTs for their affinity for lipids. Most notably, the galloyl moiety, the structural flexibility of the entire tannin structure, the hydrophobicity of the tannin, and higher molecular weight were observed to be important for the stronger interactions with the lipids. The strongest interactions with lipids were observed for rugosins D and G. It was also observed that some HTs with moderate hydrophobicities, such as geraniin, chebulagic acid, and chebulinic acid, did not have any detectable interactions with the lipid vesicles, suggesting that a hydrophobic structure alone does not guarantee an affinity for lipids.</p

    Interactions between Hydrolysable Tannins and Lipid Vesicles from Escherichia coli with Isothermal Titration Calorimetry

    Get PDF
    Isothermal titration calorimetry (ITC) was used to study the interactions between hy- drolysable tannins (HTs) and lipid vesicles prepared from a phospholipid extract of Escherichia coli (E. coli). A group of 24 structurally different HTs was selected, and structural differences affecting their affinities to interact with lipid vesicles in aqueous buffered media were identified. In general, the interactions between HTs and lipid vesicles were exothermic in nature, and ITC as a technique functioned well in the screening of HTs for their affinity for lipids. Most notably, the galloyl moiety, the structural flexibility of the entire tannin structure, the hydrophobicity of the tannin, and higher molecular weight were observed to be important for the stronger interactions with the lipids. The strongest interactions with lipids were observed for rugosins D and G. It was also observed that some HTs with moderate hydrophobicities, such as geraniin, chebulagic acid, and chebulinic acid, did not have any detectable interactions with the lipid vesicles, suggesting that a hydrophobic structure alone does not guarantee an affinity for lipids

    Antimicrobial Activities of Ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus

    Get PDF
    In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e.,Clostridiales perfringens, Escherichia coli, Lactobacillus plantarumandStaphylococcus aureus. All tested compounds showed antimicrobial effects againstS. aureus, and almost all againstE. coliandC. perfringens. ForL. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest forS. aureusand the weakest forC. perfringens. ForS. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results withS. aureusshowed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. ForE. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. ForC. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought

    Ellagitannins with Glucopyranose Cores Have Higher Affinities to Proteins than Acyclic Ellagitannins by Isothermal Titration Calorimetry

    Get PDF
    The thermodynamics of the interactions of different ellagitannins with two proteins, namely, bovine serum albumin (BSA) and gelatin, were studied by isothermal titration calorimetry. Twelve individual ellagitannins, including different monomers, dimers, and a trimer, were used. The studies showed that several structural features affected the interaction between the ellagitannin and the protein. The interactions of ellagitannins with proteins were stronger with gelatin than with BSA. The ellagitannin-gelatin interactions contained both the primary stronger and the secondary weaker binding sites. The ellagitannin-BSA interactions showed very weak secondary interactions. The ellagitannins with glucopyranose cores had stronger interaction than C-glycosidic ellagitannins with both proteins. In addition, the observed enthalpy change increased as the degree of oligomerization increased. The stronger interactions were also observed with free galloyl groups in the ellagitannin structure and with higher molecular flexibility. Other smaller structural features did not show any overall trend

    Ellagitannins Inhibit the Exsheathment of Haemonchus contortus and Trichostrongylus colubriformis Larvae: The Efficiency Increases Together with the Molecular Size

    Get PDF
    Worldwide, parasitic gastrointestinal nematodes continue to threaten animal health, welfare, and production in outdoor breeding systems of small ruminants. For more than 50 years, the control of these parasitic worms has relied on the use of commercial synthetic anthelmintics. However, anthelmintic resistance in worm populations is nowadays widespread and requires novel solutions. The use of tannin-rich plants has been suggested as an alternative to synthetic anthelmintics to control gastrointestinal nematodes. The majority of previous studies have focused on the activity of proanthocyanidins (syn condensed tannins), and less is known about ellagitannins. In this study, the effects of 30 structurally unique ellagitannins on the exsheathment of third-stage infective larvae were examined on Haemonchus contortus and Trichostrongylus colubriformis by the in vitro larval exsheathment inhibition assay. Ellagitannins were found to be promising natural anthelmintics as they showed direct inhibition on larval exsheathment for both nematode species. In general, ellagitannins were more efficient at inhibiting the exsheathment of H. contortus larvae than those of T. colubriformis. The efficiency of inhibition increased as the degree of oligomerization or the molecular weight of the ellagitannin increased. Otherwise, we found no other structural features of ellagitannins that significantly affected the anthelmintic activity on the third-stage infective larvae. The effective concentrations were physiologically relevant and should be achievable in the gastrointestinal tract also in in vivo conditions
    • …
    corecore