8 research outputs found

    The Effect of Bevacizumab on Human Malignant Melanoma Cells with Functional VEGF/VEGFR2 Autocrine and Intracrine Signaling Loops

    No full text
    Receptors for the angiogenic factor VEGF are expressed by tumor cancer cells including melanoma, although their functionality remains unclear. Paired human melanoma cell lines WM115 and WM239 were used to investigate differences in expression and functionality of VEGF and VEGFR2 in vitro and in vivo with the anti-VEGF antibody bevacizumab. Both WM115 and WM239 cells expressed VEGF and VEGFR2, the levels of which were modulated by hypoxia. Detection of native and phosphorylated VEGFR2 in subcellular fractions under serum-free conditions showed the presence of a functional autocrine as well as intracrine VEGF/VEGFR2 signaling loops. Interestingly, treatment of WM115 and WM239 cells with increasing doses of bevacizumab (0–300 µg/ml) in vitro did not show any significant inhibition of VEGFR2 phosphorylation. Small-molecule tyrosine kinase inhibitor, sunitinib, caused an inhibition of VEGFR2 phosphorylation in WM239 but not in WM115 cells. An increase in cell proliferation was observed in WM115 cells treated with bevacizumab, whereas sunitinib inhibited proliferation. When xenografted to immune-deficient mice, we found bevacizumab to be an effective antiangiogenic but not antitumorigenic agent for both cell lines. Because bevacizumab is unable to neutralize murine VEGF, this supports a paracrine angiogenic response. We propose that the failure of bevacizumab to generate an antitumorigenic effect may be related to its generation of enhanced autocrine/intracrine signaling in the cancer cells themselves. Collectively, these results suggest that, for cancers with intracrine VEGF/ VEGFR2 signaling loops, small-molecule inhibitors of VEGFR2 may be more effective than neutralizing antibodies at disease control

    Expression Profiles of AQP3 and AQP4 in Lung Adenocarcinoma Samples Generated via Bronchoscopic Biopsies

    No full text
    Aquaporins (AQPs) are highly conserved channel proteins which are mainly responsible for the exchange of water and small molecules and have shown to play a pivotal role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer seen in patients in Europe and the United States. However, in patients it is often not diagnosed until the advanced tumor stage is present. Previous studies provided strong evidence that some members of the AQP family could serve as clinical biomarkers for different diseases. Therefore, we aimed to investigate how AQP3 and AQP4 protein expression in lung adenocarcinoma (ADC) biopsy samples correlate with clinical and pathological parameters. The protein expression of AQP3 and AQP4 was analyzed based on immunohistochemical staining. AQP3 protein was observed in the cytoplasmic membrane of cancer tissue in 82% of lung samples. Significant differences in relative protein expression of AQP3 were noted between advanced age patients compared to younger counterparts (p = 0.017). A high expression of AQP3 was significant in cancer tissue when compared to the control group (p p p = 0.046). Based on our findings, AQP3 and AQP4 could be used as biomarkers in ADC patients

    Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells

    No full text
    Epigenetic modifications are involved in the initiation and progression of cancer. Expression patterns and activity of DNA methyltransferases (DNMTs) are strictly controlled in normal cells; however, regulation of these enzymes is lost in cancer cells due to unknown reasons. Cancer therapies which target DNMTs are promising treatments of hematologic cancers, but they lack effectiveness in solid tumors. Solid tumors exhibit areas of hypoxia and hypoglycaemia due to their irregular and dysfunctional vasculature, and we previously showed that hypoxia reduces global DNA methylation. Colorectal carcinoma (CRC) cells (HCT116 and 379.2; p53+/+ and p53-/-, respectively) were subjected to ischemia (hypoxia and hypoglycaemia) in vitro and levels of DNMTs were assessed. We found a significant decrease in mRNA for DNMT1, DNMT3a and DNMT3b, and similar reductions in DNMT1 and DNMT3a protein levels were detected by western blotting. In addition, total activity levels of DNMTs (as measured by an ELISA-based DNMT activity assay) were reduced in cells exposed to hypoxic and hypoglycaemic conditions. Immunofluorescence of HCT116 tumor xenografts demonstrated an inverse relationship between ischemia (as revealed by carbonic anhydrase IX staining) and DNMT1 protein. Bisulfite sequencing of the proximal promoter region of p16INK4a showed a decrease in 5-methylcytosine following in vitro exposure to ischemia. These studies provide evidence for the downregulation of DNMTs and modulation of methylation patterns by hypoxia and hypoglycaemia in human CRC cells, both in vitro and in vivo. Our findings suggest that ischemia, either intrinsic or induced through the use of anti-angiogenic drugs, may influence epigenetic patterning and hence tumor progression

    VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein.</p> <p>Methods</p> <p>Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal) and WM239 (melanoma) xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1<sup>-/- </sup>mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX.</p> <p>Results</p> <p>VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD) in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93%) and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60%) xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased stabilization of colorectal microvessels, but no such change in melanoma vessels.</p> <p>Conclusions</p> <p>Overall, our study suggests that while heterogeneous expression of VEGFR2 is a feature of human tumors, it may not affect response to low dose metronomic cyclophosphamide treatment and possibly other anti-angiogenic approaches. It remains to be seen whether this heterogeneity is partly responsible for the variable clinical success seen to date with targeted anti-VEGFR2 therapy.</p
    corecore