4,895 research outputs found
Single molecule DNA sequencing via transverse electronic transport using a graphene nanopore: A tight-binding approach
We report a tight-binding model study of two-terminal graphene nanopore based
device, for sequential determination of DNA bases. Using Greens function
approach we calculate conductance spectra, I-V response and also the changes in
local density of states (LDOS) profile as four different nucleobases inserted
one by one into the pore embedded in the zigzag graphene nanoribbon (ZGNR). We
find distinct features in LDOS profile for different nucleotides and the same
is also present in conductance and I-V response. We propose the actual working
principle of the device, by setting the bias across the pore to a fixed voltage
(this voltage gives maximum discrimination between characteristic current of
the four nucleotides) and translocating the ss-DNA through the nanopore using a
transverse electric field while recording the characteristic current of the
nucleotides. Not only the typical current output is much larger than previous
results, but the seaparation between them for different bases are also
definite. Our investigation provides high accuracy and significant amount of
distinction between different nucleotides.Comment: 6 pages, 5 figure
Recommended from our members
Analysis of fuzzy clustering and a generic fuzzy rule-based image segmentation technique
Many fuzzy clustering based techniques when applied to image segmentation do not incorporate spatial relationships of the pixels, while fuzzy rule-based image segmentation techniques are generally application dependent. Also for most of these techniques, the structure of the membership functions is predefined and parameters have to either automatically or manually derived. This paper addresses some of these issues by introducing a new generic fuzzy rule based image segmentation (GFRIS) technique, which is both application independent and can incorporate the spatial relationships of the pixels as well. A qualitative comparison is presented between the segmentation results obtained using this method and the popular fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms using an empirical discrepancy method. The results demonstrate this approach exhibits significant improvements over these popular fuzzy clustering algorithms for a wide range of differing image types
Image-Dependent Spatial Shape-Error Concealment
Existing spatial shape-error concealment techniques are broadly based upon either parametric curves that exploit geometric information concerning a shape's contour or object shape statistics using a combination of Markov random fields and maximum a posteriori estimation. Both categories are to some extent, able to mask errors caused by information loss, provided the shape is considered independently of the image/video. They palpably however, do not afford the best solution in applications where shape is used as metadata to describe image and video content. This paper presents a novel image-dependent spatial shape-error concealment (ISEC) algorithm that uses both image and shape information by employing the established rubber-band contour detecting function, with the novel enhancement of automatically determining the optimal width of the band to achieve superior error concealment. Experimental results corroborate both qualitatively and numerically, the enhanced performance of the new ISEC strategy compared with established techniques
Ground state phase diagram and magnetoconductance of a one-dimensional Hubbard superlattice at half-filling
We have studied a one dimensional Hubbard superlattice with different Coulomb
correlations at alternating sites for a half-filled band. Mean field
calculations based on the Hartree-Fock approximation together with a real space
renormalization group technique were used to study the ground state of the
system. The phase diagrams obtained in these approaches agree with each other
from the weak to the intermediate coupling regime. The mean field results show
very quick convergence with system size. The renormalization group results
indicate a spatial modulation of local moments that was identified in some
previous work. Also we have studied the magnetoconductance of such
superlattices which reveals several interesting points.Comment: 10 pages, 13 figures. to be published in Phys. Rev. B, vol. 75, Issue
23 (tentative
- тАж