841 research outputs found
Effect Of Phase Angle On Tandem Flapping-wing Power Generation
Two tandem wings undergoing two-dimensional sinusoidal and non-sinusoidal pitch and plunge motions are studied experimentally in a water channel at a chord-based Reynolds number of 10,000. The hindwing operates in the wake of the forewing, and its performance is affected by the vortices shed by the forewing in a tandem wing application. The vortex-wing and vortex-vortex interactions are affected by the changes in the phase angle between the fore and the hind wings. This study investigates how the changes in phase angle between the motions of the two wings play a role on the leading edge vortex (LEV) formations on the hindwing and the resulting effects on the power coefficient and the efficiency. The instantaneous lift and torque are measured by a force sensor; the velocity fields are captured by a digital particle image velocimetry (PIV) system. Sinusoidal and non-sinusoidal oscillations consisting of a pitch leading plunge motion with ϕ = 90° phase angle are used for the fore and hind wing motions. Different phase angles between the fore and hindwings are tested for the tandem configuration in the range of ψ = 0°–360° with an increment of 45°. The pitch pivot point to point distance of two chords was set between the fore and hindwings. It is found that the phase angle between the tandem foils determines the timing and the sign of the forewing-shed LEV when the hindwing encounters this LEV. Such an interaction affects the LEV formation, growth and shedding on the hindwing and results in a change in power generation performance of the hindwing. The results further show that at this specific distance between the wings, the maximum power coefficient and efficiency occur when the phase angle between the motions of the tandem wings is near ψ = 135° for the sinusoidal pitching and plunging.This study is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant 214M385
Gas and dust from solar metallicity AGB stars
We study the asymptotic giant branch (AGB) evolution of stars with masses
between . We focus on stars with a solar chemical
composition, which allows us to interpret evolved stars in the Galaxy. We
present a detailed comparison with models of the same chemistry, calculated
with a different evolution code and based on a different set of physical
assumptions. We find that stars of mass experience hot
bottom burning at the base of the envelope. They have AGB lifetimes shorter
than yr and eject into their surroundings gas contaminated
by proton-capture nucleosynthesis, at an extent sensitive to the treatment of
convection. Low mass stars with become
carbon stars. During the final phases the C/O ratio grows to . We find
a remarkable agreement between the two codes for the low-mass models and
conclude that predictions for the physical and chemical properties of these
stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB
phase. The dust produced is also dependent on the mass: low-mass stars produce
mainly solid carbon and silicon carbide dust, whereas higher mass stars produce
silicates and alumina dust. Possible future observations potentially able to
add more robustness to the present results are also discussed.Comment: 27 pages, 24 figures; accepted for publication in MNRA
Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars
We explore modifications to the current scenario for the slow neutron capture
process in asymptotic giant branch (AGB) stars to account for the Pb deficiency
observed in post-AGB stars of low metallicity ([Fe/H] ~ -1.2) and low initial
mass (~ 1 - 1.5 Msun) in the Large and Small Magellanic Clouds. We calculated
the stellar evolution and nucleosynthesis for a 1.3 Msun star with [Fe/H]=-1.3
and tested different amounts and distributions of protons leading to the
production of the main neutron source within the 13C-pocket and proton
ingestion scenarios. No s-process models can fully reproduce the abundance
patterns observed in the post-AGB stars. When the Pb production is lowered the
abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are
also lowered to below those observed. Neutron-capture processes with neutron
densities intermediate between the s and the rapid neutron-capture processes
may provide a solution to this problem and be a common occurrence in low-mass,
low-metallicity AGB stars.Comment: 6 pages, 4 figures. To be published in Astronomy and Astrophysic
Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements
The production of the elements heavier than iron via slow neutron captures
(the s process) is a main feature of the contribution of asymptotic giant
branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos.
However, our understanding of the main neutron source, the 13C(alpha,n)16O
reaction, is still incomplete. It is commonly assumed that in AGB stars mixing
beyond convective borders drives the formation of 13C pockets. However, there
is no agreement on the nature of such mixing and free parameters are present.
By means of a parametric model we investigate the impact of different mixing
functions on the final s-process abundances in low-mass AGB models. Typically,
changing the shape of the mixing function or the mass extent of the region
affected by the mixing produce the same results. Variations in the relative
abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are
generally within +/-0.2 dex, similar to the observational error bars. We
conclude that other stellar uncertainties - the effect of rotation and of
overshoot into the C-O core - play a more important role than the details of
the mixing function. The exception is at low metallicity, where the Pb
abundance is significantly affected. In relation to the composition observed in
stardust SiC grains from AGB stars, the models are relatively close to the data
only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly
Notices of the Royal Astronomical Societ
On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds
The stars in the Magellanic Clouds with the largest degree of obscuration are
used to probe the highly uncertain physics of stars in the asymptotic giant
branch (AGB) phase of evolution. Carbon stars in particular, provide key
information on the amount of third dredge-up (TDU) and mass loss. We use two
independent stellar evolution codes to test how a different treatment of the
physics affects the evolution on the AGB. The output from the two codes are
used to determine the rates of dust formation in the circumstellar envelope,
where the method used to determine the dust is the same for each case. The
stars with the largest degree of obscuration in the LMC and SMC are identified
as the progeny of objects of initial mass and , respectively. This difference in mass is motivated by the
difference in the star formation histories of the two galaxies, and offers a
simple explanation of the redder infrared colours of C-stars in the LMC
compared to their counterparts in the SMC. The comparison with the Spitzer
colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass
fraction must have been reached by stars of initial
mass around . Our results confirm the necessity of adopting
low-temperature opacities in stellar evolutionary models of AGB stars. These
opacities allow the stars to obtain mass-loss rates high enough () to produce the amount of dust needed to reproduce the
Spitzer coloursComment: 14 pages, 5 figures, 1 table; accepted for publication in MNRAS Main
Journa
An investigation of artificial neural network structure and its effects on the estimation of the low-cycle fatigue parameters of various steels
Artificial neural networks (ANNs) are a widely used machine learning approach for estimating low-cycle fatigue parameters. ANN structure has its parameters such as hidden layers, hidden neurons, activation functions, training functions, and so forth, and these parameters have a significant influence over the results. Three hidden layer combinations, the hidden neurons ranging from 1 to 25, and different activation functions like hyperbolic tangent sigmoid (tansig), logistic sigmoid (logsig), and linear (purelin) were used, and their effects on the low-cycle fatigue parameter estimation were investigated to determine optimal ANN structure. Based on the results, suggestions regarding ANN structure for the estimation of the low-cycle fatigue parameters and transition fatigue life were presented. For the output layer and hidden layers, the most suitable activation function was tansig. The optimal hidden neuron range has been found between 4 and 9. The neural network structure with one hidden layer was determined to be most suitable in terms of less knowledge, structural complexity, and computational time and power
An ALMA view of CS and SiS around oxygen-rich AGB stars
We aim to determine the distributions of molecular SiS and CS in the
circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how
these distributions differ between stars that lose mass at different rates. In
this study we analyse ALMA observations of SiS and CS emission lines for three
oxygen-rich galactic AGB stars: IK Tau, with a moderately high mass-loss rate
of M yr, and W Hya and R Dor with low mass loss
rates of M yr. These molecules are usually
more abundant in carbon stars but the high sensitivity of ALMA allows us to
detect their faint emission in the low mass-loss rate AGB stars. The high
spatial resolution of ALMA also allows us to precisely determine the spatial
distribution of these molecules in the circumstellar envelopes. We run
radiative transfer models to calculate the molecular abundances and abundance
distributions for each star. We find a spread of peak SiS abundances with
for R Dor, for W Hya, and for
IK Tau relative to H. We find lower peak CS abundances of
for R Dor, for W Hya and
for IK Tau, with some stratifications in the abundance
distributions. For IK Tau we also calculate abundances for the detected
isotopologues: CS, SiS, SiS, SiS, SiS,
SiS, and SiS. Overall the isotopic ratios we derive
for IK Tau suggest a lower metallicity than solar.Comment: 16 page
The Large Magellanic Cloud as a laboratory for Hot Bottom Burning in massive Asymptotic Giant Branch stars
We use Spitzer observations of the rich population of Asymptotic Giant Branch
stars in the Large Magellanic Cloud (LMC) to test models describing the
internal structure and nucleosynthesis of the most massive of these stars, i.e.
those with initial mass above . To this aim, we compare
Spitzer observations of LMC stars with the theoretical tracks of Asymptotic
Giant Branch models, calculated with two of the most popular evolution codes,
that are known to differ in particular for the treatment of convection.
Although the physical evolution of the two models are significantly different,
the properties of dust formed in their winds are surprisingly similar, as is
their position in the colour-colour (CCD) and colour-magnitude (CMD) diagrams
obtained with the Spitzer bands. This model independent result allows us to
select a well defined region in the () plane,
populated by AGB stars experiencing Hot Bottom Burning, the progeny of stars
with mass . This result opens up an important test of the
strength hot bottom burning using detailed near-IR (H and K bands)
spectroscopic analysis of the oxygen-rich, high luminosity candidates found in
the well defined region of the colour-colour plane. This test is possible
because the two stellar evolution codes we use predict very different results
for the surface chemistry, and the C/O ratio in particular, owing to their
treatment of convection in the envelope and of convective boundaries during
third dredge-up. The differences in surface chemistry are most apparent when
the model stars reach the phase with the largest infrared emission.Comment: 11 pages, 14 figures, accepted for publication in MNRA
- …