31 research outputs found

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF
    Elevated Na+ levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits. Here, we provide an updated overview of salt tolerant mechanisms in glycophytes with a particular interest in rice (Oryza sativa) plants. Protective mechanisms that prevent water loss due to the increased osmotic pressure, the development of Na+ toxicity on essential cellular metabolisms, and the movement of ions via the apoplastic pathway (i.e. apoplastic barriers) are described here in detail.ArticleRICE. 5:11 (2012)journal articl

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF

    The pea stem

    No full text

    Casparian strip development and its potential function in salt tolerance

    No full text
    The root system is particularly affected by unfavorable conditions because it is in direct contact with the soil environment. Casparian strips, a specialized structure deposited in anticlinal walls, are characterized by the impregnation of the primary wall pores with lignin and suberin. The Casparian strips in the endo- and exodermis of vascular plant roots appear to play an important role in preventing the non-selective apoplastic bypass of salts into the stele along the apoplast under salt stress. However, only a few investigations have examined the deposition and function of these apoplastic barriers in response to salt stress in higher plants
    corecore