523 research outputs found
Solutions to Integrals Involving the Marcum Q-Function and Applications
Novel analytic solutions are derived for integrals that involve the
generalized Marcum Q-function, exponential functions and arbitrary powers.
Simple closed-form expressions are also derived for the specific cases of the
generic integrals. The offered expressions are both convenient and versatile,
which is particularly useful in applications relating to natural sciences and
engineering, including wireless cpmmunications and signal processing. To this
end, they are employed in the derivation of the channel capacity for fixed rate
and channel inversion in the case of correlated multipath fading and switched
diversity.Comment: 15 Pages, 2 Figure
Energy Detection of Unknown Signals over Cascaded Fading Channels
Energy detection is a favorable mechanism in several applications relating to
the identification of deterministic unknown signals such as in radar systems
and cognitive radio communications. The present work quantifies the detrimental
effects of cascaded multipath fading on energy detection and investigates the
corresponding performance capability. A novel analytic solution is firstly
derived for a generic integral that involves a product of the Meijer
function, the Marcum function and arbitrary power terms. This solution
is subsequently employed in the derivation of an exact closed-form expression
for the average probability of detection of unknown signals over *Rayleigh
channels. The offered results are also extended to the case of square-law
selection, which is a relatively simple and effective diversity method. It is
shown that the detection performance is considerably degraded by the number of
cascaded channels and that these effects can be effectively mitigated by a
non-substantial increase of diversity branches.Comment: 12 page
Optical Asymmetric Modulation for VLC Systems
The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity
Analytic solutions to a Marcum Q-function-based integral and application in energy detection of unknown signals over multipath fading channels
This work presents analytic solutions for a useful integral in wireless
communications, which involves the Marcum function in combination with an
exponential function and arbitrary power terms. The derived expressions have a
rather simple algebraic representation which renders them convenient both
analytically and computationally. Furthermore, they can be useful in wireless
communications and particularly in the context of cognitive radio
communications and radar systems, where this integral is often encountered. To
this end, we derive novel expressions for the probability of detection in
energy detection based spectrum sensing over fading channels.
These expressions are given in closed-form and are subsequently employed in
analyzing the effects of generalised multipath fading conditions in cognitive
radio systems. As expected, it is shown that the detector is highly dependent
upon the severity of fading conditions as even slight variation of the fading
parameters affect the corresponding performance significantly.Comment: Latest/Preprint Versio
- …