90 research outputs found
Theoretical limits of the multistacked 1-D and 2-D microstructured inorganic solar cells
Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at %26 with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range. © 2015 SPIE
Оценка риска чрезвычайных ситуаций на гидротехнических сооружениях горно-обогатительного комбината
В процессе работы были изучены: характеристики гидротехнических сооружений; статистика и причины аварий на гидротехнических сооружениях.
В результате исследования были предложены сценарии развития аварийных ситуаций, был выявлен наиболее вероятный сценарий, рассчитаны зоны затопления при аварии на гидротехническом сооружении и оценена степень разрушения зданий и дорог в городе.
На основании полученных результатов были разработаны рекомендаций по снижению вероятности реализации чрезвычайной ситуации.In the course of work, we studied: characteristics of hydraulic structures; statistics and causes of accidents at hydraulic structures.
As a result of the study, emergency scenarios were proposed, the most likely scenario was identified, flood zones were calculated in the event of an accident at a hydraulic structure, and the degree of destruction of buildings and roads in the city was estimated.
Based on the results obtained, recommendations were developed to reduce the likelihood of an emergency situation occurring
Owyhee Russet: AVariety with High Yields of U.S. No. 1 Tubers, Excellent Processing Quality, and Moderate Resistance to Fusarium Dry Rot (\u3ci\u3eFusarium solani var. coeruleum\u3c/i\u3e)
Owyhee Russet (AO96160-3) originated from a cross between A89384-10 and A89512-3 in 1996. Owyhee Russet was released in 2009 by Oregon State University, in cooperation with the USDA-ARS and the Agricultural Experiment Stations of Idaho and Washington and is a product of the Northwest Potato Variety (Tri-State) Development Program. Owyhee Russet has semi-erect medium sized vines with medium to late maturity. The tubers are long, with a tan skin, medium russeting, and attractive tuber appearance for fresh market. Owyhee Russet was evaluated in several locations across the Northwest for more than 15 years. Total yield of Owyhee Russet is similar to that of Russet Burbank and Ranger Russet but significantly higher than Russet Norkotah. U.S. No.1 tuber yield of Owyhee Russet is significantly higher than Russet Burbank and Russet Norkotah, resulting in substantially higher marketable yield. Owyhee Russet tubers have significantly higher specific gravity than Russet Burbank and Russet Norkotah. Fry color following tuber storage at 4°C and 9°C is significantly lighter for Owyhee Russet than the comparison varieties. Relative strengths include high yield with a very high proportion of U.S. No.1 tubers, good tuber appearance and excellent processing quality, resistance to cold sweetening, common scab and Fusarium dry rot. Weaknesses include susceptibility to foliar and tuber late blight and susceptibility to metribuzin herbicide injury. Allelic patterns of five SSR markers have shown that Owyhee Russet has a distinctive DNA genetic fingerprint from its russet type reference varieties which are Ranger Russet, Russet Burbank, and Russet Norkotah
Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies
UMR-AGAP Equipe DAVV (Diversité, adaptation et amélioration de la vigne) ; équipe ID (Intégration de Données)International audienceAbstractBackgroundAs for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies.ResultsStarting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance).ConclusionsOur association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment
Recommended from our members
Owyhee Russet: A Variety with High Yields of U.S. No. 1 Tubers, Excellent Processing Quality, and Moderate Resistance to Fusarium Dry Rot (Fusarium solani var. coeruleum)
Owyhee Russet (AO96160-3) originated from a cross between A89384-10 and A89512-3 in 1996. Owyhee Russet was released in 2009 by Oregon State University, in cooperation with the USDA-ARS and the Agricultural Experiment Stations of Idaho and Washington and is a product of the Northwest Potato Variety (Tri-State) Development Program. Owyhee Russet has semi-erect medium sized vines with medium to late maturity. The tubers are long, with a tan skin, medium russeting, and attractive tuber appearance for fresh market. Owyhee Russet was evaluated in several locations across the Northwest for more than 15 years. Total yield of Owyhee Russet is similar to that of Russet Burbank and Ranger Russet but significantly higher than Russet Norkotah. U.S. No.1 tuber yield of Owyhee Russet is significantly higher than Russet Burbank and Russet Norkotah, resulting in substantially higher marketable yield. Owyhee Russet tubers have significantly higher specific gravity than Russet Burbank and Russet Norkotah. Fry color following tuber storage at 4°C and 9°C is significantly lighter for Owyhee Russet than the comparison varieties. Relative strengths include high yield with a very high proportion of U.S. No.1 tubers, good tuber appearance and excellent processing quality, resistance to cold sweetening, common scab and Fusarium dry rot. Weaknesses include susceptibility to foliar and tuber late blight and susceptibility to metribuzin herbicide injury. Allelic patterns of five SSR markers have shown that Owyhee Russet has a distinctive DNA genetic fingerprint from its russet type reference varieties which are Ranger Russet, Russet Burbank, and Russet Norkotah.Keywords: Breeding, Processing, Common scab resistance, Fusarium dry rot resistance, Variety, Solanum tuberosu
Whole-genome genotyping of grape using a panel of microsatellite
The use of microsatellite markers in large-scale genetic studies is limited by its low throughput and high cost and labor requirements. Here, we provide a panel of 45 multiplex PCRs for fast and cost-efficient genome-wide fluorescence-based microsatellite analysis in grapevine. The developed multiplex PCRs panel (with up to 15-plex) enables the scoring of 270 loci covering all the grapevine genome (9 to 20 loci/chromosome) using only 45 PCRs and sequencer runs. The 45 multiplex PCRs were validated using a diverse grapevine collection of 207 accessions, selected to represent most of the cultivated Vitis vinifera genetic diversity. Particular attention was paid to quality control throughout the whole process (assay replication, null allele detection, ease of scoring). Genetic diversity summary statistics and features of electrophoretic profiles for each studied marker are provided, as are the genotypes of 25 common cultivars that could be used as references in other studies
Exploring graphene's potential as a transparent conductive layer in Cu2ZnSnS4 superstrate solar cells
The fabrication of environmentally friendly, semi-transparent, high-performance and cost-effective inorganic solar cells has been the subject of recent extensive study. One area of study involves incorporating one-dimensional nanostructures and high quality transparent conductive layers into the conventional thin film solar cell systems. The objective of this particular investigation was, therefore, to construct such a structure by integrating Graphene-ZnO-Nanorods (NRs) hybrid structure into a conventional Cu2ZnSnS4 (CZTS) thin film solar cell architecture. The process involved synthesizing vertically-aligned ZnO NRs, coated with thin layers of SnO2 and CdS, on chemical vapor deposited graphene pre-coated glass substrates. Following the SnO2-passivation and CdS coating, vertically well-aligned ZnO NRs were then decorated with a 500 nm-thick layer of CZTS using a one-step thermal evaporation technique.This process led to the manufacture of a superstrate solar cell with SLG /Graphene/ZnO-NRs/CdS/CZTS/Ag device structure as an example of graphene's application in optoelectronic devices. To reveal the physical properties of the grown graphene and deposited CZTS thin films, they were subjected to various characterization techniques. The structural, chemical and optical analyses results showed the formation of a single-phase kesterite CZTS thin film with a copper-deficient composition and an optical band gap of 1.47 eV on glass substrate and single layer growth of graphene on Cu-foil substrate, which was subsequently successfully transferred onto glass substrates. Electrical measurements unveiled the existence of two different VCu point defects in CZTS with thermal activation energies of 45 meV and 180 meV. The manufactured superstrate solar cell exhibited a short-circuit current density of 9.34 mA/cm2, an open-circuit voltage of 390.6 mV, a fill factor of 17.2%, and an energy conversion efficiency of 0.63%. © 2023 Elsevier B.V.Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 120F31
Impact of inverter based resources on system protection
202109 bchyVersion of RecordPublishe
Impact of wind generation on power swing protection
202208 bckwAccepted ManuscriptOthersElectric Power Research InstitutePublishe
- …