18 research outputs found

    Alterations in hypoglossal motor neurons due to GAD67 and VGAT deficiency in mice

    Get PDF
    There is an emerging body of evidence that glycinergic and GABAergic synaptic inputs onto motor neurons (MNs) help regulate the final number of MNs and axonal muscle innervation patterns. Using mutant glutamate decarboxylase 67 (GAD67) and vesicular inhibitory amino acid transporter (VGAT) deficient mice, we describe the effect that deficiencies of presynaptic GABAergic and/or glycinergic release have on the post-synaptic somato-dendritic structure of motor neurons, and the development of excitatory and inhibitory synaptic inputs to MNs. We use whole-cell patch clamp recording of synaptic currents in E18.5 hypoglossal MNs from brainstem slices, combined with dye-filling of these recorded cells with Neurobiotin™, high-resolution confocal imaging and 3-dimensional reconstructions. Hypoglossal MNs from GAD67- and VGAT-deficient mice display decreased inhibitory neurotransmission and increased excitatory synaptic inputs. These changes are associated with increased dendritic arbor length, increased complexity of dendritic branching, and increased density of spiny processes. Our results show that presynaptic release of inhibitory amino acid neurotransmitters are potent regulators of hypoglossal MN morphology and key regulators of synaptic inputs during this critical developmental time point

    Two types of ON direction-selective ganglion cells in rabbit retina

    No full text
    Direction-selective ganglion cells (DSGCs) respond with robust spiking to image motion in a particular direction. Previously, two main types of DSGCs have been described in rabbit retina: the ON-OFF DSGCs respond to both increases and decreases in illumination, whereas the ON DSGCs respond only to increases in illumination. In this study, we show that there are two distinct types of ON DSGCs, which can be separated by differences in their receptive-field properties, dendritic morphology and tracer-coupling pattern. While both types show robust direction-selectivity, one type responds to increases in illumination with sustained firing, whereas the other responds with relatively transient firing. The two types of ON DSGCs also have distinct dendritic morphologies: the sustained cells give rise to shorter and more numerous terminal dendrites, which are distributed throughout the dendritic field forming a space-filling lattice. In addition, the transient ON DSGCs, but not the sustained ON DSGCs, show tracer-coupling to a mosaic of amacrine cells when filled with Neurobiotin. Both types of ON DSGCs have been encountered in previous studies but were not recognized as distinct types. We propose that the two types also differ in their central projections, with only the sustained cells projecting to the medial terminal nucleus (MTN) of the accessory optic system (AOS)

    Penetratin peptide potentiates endogenous calcium-activated chloride currents in Xenopus oocytes

    No full text
    Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 ÎĽM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50=3.2 ÎĽM). Penetratin-potentiated currents reversed at -18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50=5.9 ÎĽM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl- channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion

    Postnatal changes in TASK-1 and TREK-1 expression in rat brain stem and cerebellum

    No full text
    Developmental changes in expression of two-pore domain K+ channels, TASK-1 and TREK-1, were investigated in the juvenile (postnatal day 13; P13) and adult (P105) rat brain stem and cerebellum using immunohistochemistry. In the juvenile, extensive TASK-1-like immunoreactivity (TASK-1-LIR) was seen among glial cells in the white matter (e.g., radial glia), which showed marked reduction in the adult. In contrast,TASK-1-LIR in neurons including cerebellar Purkinje and granule cells, hypoglossal and facial motoneurons, and ventrolateral medulla neurons was increased in the adult. TASK-1-LIR in neuroglia surrounding peripheral axons of cranial nerves was persistent. TREK-1-LIR was similar between ages, although TREK-1-LIR was neuronal and present only in juvenile cerebellar external germinal layer. Present results suggest roles for TASK-1 and K+ homeostasis in neuro-glial interaction, neurogenesis, differentiation, migration, axon guidance, synaptogenesis and myelination

    Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

    No full text
    Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn’s synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions

    Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea

    No full text
    Developmental expression of two-pore domain potassium (2P K+) channels, TASK-1 and TREK-1, was investigated in the rat cochlea at onset of hearing and after maturity using RT-PCR and immunocytochemistry. TASK-1 and TREK-1 m RNAs were detected by RT-PCR at postnatal day (P) 9-12. TASK-1 like immunoreactivity (LIR) in the P13 cochlea was observed in Deiters, pillar, Claudius' and outer sulcus cells, spiral limbus fibrocytes, and neuroglia. At P13, TREK-1-LIR was more wide-spread, and included sensory and supporting cells of the organ of Corti, spiral ganglion, stria vascularis, Reissner's membrane, inner and outer sulcus cells, connective and support tissues surrounding modiolus. By P105 the pattern of TASK-1- and TREK-1-LIR became limited to a subset of the above structures, suggesting developmental regulation. During postnatal development, TASK-I may be important in the onset (around PI 1) and maturation (by P22) of endocochlear potential and hearing. The distribution of TASK-1 and TREK-1 suggest a role in K+ cycling and homeostasis. As TASK-1 and TREK-1 are inhibited by local anesthetics at doses used to treat tinnitus, 2P K+ channels may also be important in cochlear dysfunction

    Glycinergic neurotransmission: A potent regulator of embryonic motor neuron dendritic morphology and synaptic plasticity

    No full text
    Emerging evidence suggests that central synaptic inputs onto motor neurons (MNs) play an important role in developmental regulation of the final number of MNs and their muscle innervation for a particular motor pool. Here, we describe the effect of genetic deletion of glycinergic neurotransmission on single MN structure and on functional excitatory and inhibitory inputs to MNs. We measured synaptic currents in E18.5 hypoglossal MNs from brain slices using whole-cell patch-clamp recording, followed by dye-filling these same cells with Neurobiotin, to define their morphology by high-resolution confocal imaging and 3D reconstruction. We show that hypoglossal MNs of mice lacking gephyrin display increased dendritic arbor length and branching, increased spiny processes, decreased inhibitory neurotransmission, and increased excitatory neurotransmission. These findings suggest that central glycinergic synaptic activity plays a vital role in regulating MN morphology and glutamatergic central synaptic inputs during late embryonic development

    Developmental changes in the morphology of mouse hypoglossal motor neurons

    No full text
    Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n\ua0=\ua034) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17–18 and P0. MN somatic volume gradually increased for the first 2\ua0weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17–P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42\ua0%) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18–P4, increased in distal dendrites by P5–P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20\ua0% (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice
    corecore