3 research outputs found

    Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice

    Get PDF
    The menopausal transition in human females, which is driven by a loss of cyclic ovarian function, occurs around age 50 and is thought to underlie the emergence of an array of health problems in aging women. Although mice do not undergo a true menopause, female mice exhibit ovarian failure long before death because of chronological age and subsequently develop many of the same age-associated health complications observed in postmenopausal women. Here we show in mice that inactivation of the proapoptotic Sax gene, which sustains ovarian lifespan into advanced age, extends fertile potential and minimizes many age-related health problems, including bone and muscle loss, excess fat deposition, alopecia, cataracts, deafness, increased anxiety, and selective attention deficit. Further, ovariectomy studies show that the health benefits gained by aged females from Bax deficiency reflect a complex interplay between ovary-dependent and -independent pathways. Importantly, and contrary to popular belief, prolongation of ovarian function into advanced age by Bax deficiency did not lead to an increase in tumor incidence. Thus, the development of methods for postponing ovarian failure at menopause may represent an attractive option for improving the quality of life in aging females. © 2007 by The National Academy of Sciences of the USA

    Neto1 Is a Novel CUB-Domain NMDA Receptor–Interacting Protein Required for Synaptic Plasticity and Learning

    Get PDF
    The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans
    corecore