9 research outputs found

    (R)-PAC Biosynthesis in [BMIM][PF6]/Aqueous Biphasic System Using Saccharomyces cerevisiae BY4741 Cells

    No full text
    (R)-phenylacetylcarbinol or (R)-PAC is a pharmaceutical precursor of (1R, 2S) ephedrine and (1S, 2S) pseudoephedrine. Biotransformation of benzaldehyde and glucose by pyruvate decarboxylase produces (R)-PAC. This biotransformation suffers from toxicity of the substrate, product [(R)-PAC] and by-product (benzyl alcohol). In the present study, ionic liquid/aqueous biphasic system was employed to enhance (R)-PAC production. Fermented broth was the reaction medium in which Saccharomyces cerevisiae BY4741 was the source of pyruvate decarboxylase. Hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was the non-aqueous phase in which toxic compounds reside. Biocompatibility of [BMIM][PF6] and adequate distribution coefficients of benzaldehyde, (R)-PAC and benzyl alcohol were determined. A Box-Behnken design and response surface methodology were used for the optimization of biotransformation variables in order to maximize (R)-PAC yield and productivity. The results showed higher (R)-PAC yield and productivity of similar to 1.5-fold each in the biphasic biotransformation of phase volume ratio 0.05 as compared to the monophasic (conventional) biotransformation. Moreover, the level of major by-product benzyl alcohol was also 3.5-fold lower in biphasic biotransformation. [BMIM][PF6]/aqueous biphasic system is a new approach which could intensify the (R)PAC production

    Interfacial microrheology as a tool to study viscoelastic transitions in nanoconfined soft matter

    No full text
    We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided

    Interfacial microrheology as a tool to study viscoelastic transitions in nanoconfined soft matter

    No full text
    We present a method to perform in situ microrheological measurements on monolayers of soft materials undergoing viscoelastic transitions under compression. Using the combination of a Langmuir trough mounted on the inverted microscope stage of a laser scanning confocal microscope we track the motion of individual fluorescent quantum dots partly dispersed in monolayers spread at the air-water interface. From the calculated mean square displacement of the probe particles and extending a well established scheme of the generalized Stokes-Einstein relation in bulk to the interface we arrive at the viscoelastic modulus for the respective monolayers as a function of surface density. Measurements on monolayers of glassy as well as nonglassy polymers and a standard fatty acid clearly show sensitivity of our technique to subtle variations, in the viscoelastic properties of the highly confined materials under compression. Evidence for possible spatial variations of such viscoelastic properties at a given surface density for the fatty acid monolayer is also provided

    Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions

    No full text
    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC

    Unusual dynamical arrest in polymer grafted nanoparticles

    No full text
    We present results of temperature dependent measurements of dynamics of polymer grafted nanoparticles with high grafting density with star polymerlike morphology. We observed for the low grafting density and hence low functionality sample, a dynamically arrested state with lowering of temperature, similar to what was conjectured earlier. However the high grafting density sample shows liquidlike relaxation at all measured temperatures. Possible origin of dynamical arrest in the two grafting density sample is discussed

    Re-entrant behavior in dynamics of binary mixtures of soft hybrid nanocolloids and homopolymers

    No full text
    We present results of measurements of temperature and wavevector dependent dynamics in binary mixtures of soft polymer grafted nanoparticles and linear homopolymers. We find evidence of melting of the dynamically arrested state of the soft nanocolloids with addition of linear polymers followed by a re-entrant slowing down of the dynamics with further increase in polymer density, depending on the size ratio, delta, of the polymers and the nanocolloids. For higher delta the re-entrant behavior is not observed, even for the highest added polymer density, explored here. Possible explanation of the observed dynamics in terms of the presence of a double - glass phase is provided. (C) 2011 American Institute of Physics. [doi:10.1063/1.3644930

    Communication: Unusual dynamics of hybrid nanoparticles and their binary mixtures

    No full text
    We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480
    corecore