46 research outputs found
Human metapneumovirus prevalence and patterns of subgroup persistence identified through surveillance of pediatric pneumonia hospital admissions in coastal Kenya, 2007–2016
Background
Human metapneumovirus (HMPV) is an important respiratory pathogen that causes seasonal epidemics of acute respiratory illness and contributes significantly to childhood pneumonia. Current knowledge and understanding on its patterns of spread, prevalence and persistence in communities in low resource settings is limited.
Methods
We present findings of a molecular-epidemiological analysis of nasal samples from children < 5 years of age admitted with syndromic pneumonia between 2007 and 2016 to Kilifi County Hospital, coastal Kenya. HMPV infection was detected using real-time RT-PCR and positives sequenced in the fusion (F) and attachment (G) genes followed by phylogenetic analysis. The association between disease severity and HMPV subgroup was assessed using Fisher’s exact test.
Results
Over 10 years, 274/6756 (4.1%) samples screened were HMPV positive. Annual prevalence fluctuated between years ranging 1.2 to 8.7% and lowest in the recent years (2014–2016). HMPV detections were most frequent between October of one year to April of the following year. Genotyping was successful for 205/274 (74.8%) positives revealing clades A2b (41.0%) and A2c (10.7%), and subgroups B1 (23.4%) and B2 (24.9%). The dominance patterns were: clade A2b between 2007 and 11, subgroup B1 between 2012 and 14, and clade A2c in more recent epidemics. Subgroup B2 viruses were present in all the years. Temporal phylogenetic clustering within the subgroups for both local and global sequence data was seen. Subgroups occurring in each epidemic season were comprised of multiple variants. Pneumonia severity did not vary by subgroup (p = 0.264). In both the F and G gene, the sequenced regions were found to be predominantly under purifying selection.
Conclusion
Subgroup patterns from this rural African setting temporally map with global strain distribution, suggesting a well-mixed global virus transmission pool of HMPV. Persistence in the local community is characterized by repeated introductions of HMPV variants from the global pool. The factors underlying the declining prevalence of HMPV in this population should be investigated
Genome sequences of human coronavirus OC43 and NL63, associated with respiratory infections in Kilifi, Kenya
Coding-complete genomes of two human coronavirus OC43 strains and one NL63 strain were obtained by metagenomic sequencing of clinical samples collected in 2017 and 2018 in Kilifi, Kenya. Maximum likelihood phylogenies showed that the OC43 strains were genetically dissimilar and that the NL63 strain was closely related to NL63 genotype B viruses. [Abstract copyright: Copyright © 2019 Kamau et al.
Whole genome sequencing and phylogenetic analysis of human metapneumovirus strains from Kenya and Zambia.
BACKGROUND: Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in young children. Whole genome sequencing enables better identification of transmission events and outbreaks, which is not always possible with sub-genomic sequences. RESULTS: We report a 2-reaction amplicon-based next generation sequencing method to determine the complete genome sequences of five HMPV strains, representing three subgroups (A2, B1 and B2), directly from clinical samples. In addition to reporting five novel HMPV genomes from Africa we examined genetic diversity and sequence patterns of publicly available HMPV genomes. We found that the overall nucleotide sequence identity was 71.3 and 80% for HMPV group A and B, respectively, the diversity between HMPV groups was greater at amino acid level for SH and G surface protein genes, and multiple subgroups co-circulated in various countries. Comparison of sequences between HMPV groups revealed variability in G protein length (219 to 241 amino acids) due to changes in the stop codon position. Genome-wide phylogenetic analysis showed congruence with the individual gene sequence sets except for F and M2 genes. CONCLUSION: This is the first genomic characterization of HMPV genomes from African patients
Surveillance of respiratory viruses among children attending a primary school in rural coastal Kenya
Background: Respiratory viruses are primary agents of respiratory tract diseases. Knowledge on the types and frequency of respiratory viruses affecting school-children is important in determining the role of schools in transmission in the community and identifying targets for interventions.
Methods: We conducted a one-year (term-time) surveillance of respiratory viruses in a rural primary school in Kilifi County, coastal Kenya between May 2017 and April 2018. A sample of 60 students with symptoms of ARI were targeted for nasopharyngeal swab (NPS) collection weekly. Swabs were screened for 15 respiratory virus targets using real time PCR diagnostics. Data from respiratory virus surveillance at the local primary healthcare facility was used for comparison.
Results: Overall, 469 students aged 2-19 years were followed up for 220 days. A total of 1726 samples were collected from 325 symptomatic students; median age of 7 years (IQR 5-11). At least one virus target was detected in 384 (22%) of the samples with a frequency of 288 (16.7%) for rhinovirus, 47 (2.7%) parainfluenza virus, 35 (2.0%) coronavirus, 15 (0.9%) adenovirus, 11 (0.6%) respiratory syncytial virus (RSV) and 5 (0.3%) influenza virus. The proportion of virus positive samples was higher among lower grades compared to upper grades (25.9% vs 17.5% respectively; χ2 = 17.2, P -value <0.001). Individual virus target frequencies did not differ by age, sex, grade, school term or class size. Rhinovirus was predominant in both the school and outpatient setting.
Conclusion: Multiple respiratory viruses circulated in this rural school population. Rhinovirus was dominant in both the school and outpatient setting and RSV was of notably low frequency in the school. The role of school children in transmitting viruses to the household setting is still unclear and further studies linking molecular data to contact patterns between the school children and their households are required
Human rhinovirus spatial-temporal epidemiology in rural coastal Kenya, 2015-2016, observed through outpatient surveillance
Background
Human rhinovirus (HRV) is the predominant cause of upper respiratory tract infections, resulting in a significant public health burden. The virus circulates as many different types (~160), each generating strong homologous, but weak heterotypic, immunity. The influence of these features on transmission patterns of HRV in the community is understudied.
Methods
Nasopharyngeal swabs were collected from patients with symptoms of acute respiratory infection (ARI) at nine out-patient facilities across a Health and Demographic Surveillance System between December 2015 and November 2016. HRV was diagnosed by real-time RT-PCR, and the VP4/VP2 genomic region of the positive samples sequenced. Phylogenetic analysis was used to determine the HRV types. Classification models and G-test statistic were used to investigate HRV type spatial distribution. Demographic characteristics and clinical features of ARI were also compared.
Results
Of 5,744 NPS samples collected, HRV was detected in 1057 (18.4%), of which 817 (77.3%) were successfully sequenced. HRV species A, B and C were identified in 360 (44.1%), 67 (8.2%) and 390 (47.7%) samples, respectively. In total, 87 types were determined: 39, 10 and 38 occurred within species A, B and C, respectively. HRV types presented heterogeneous temporal patterns of persistence. Spatially, identical types occurred over a wide distance at similar times, but there was statistically significant evidence for clustering of types between health facilities in close proximity or linked by major road networks.
Conclusion
This study records a high prevalence of HRV in out-patient presentations exhibiting high type diversity. Patterns of occurrence suggest frequent and independent community invasion of different types. Temporal differences of persistence between types may reflect variation in type-specific population immunity. Spatial patterns suggest either rapid spread or multiple invasions of the same type, but evidence of similar types amongst close health facilities, or along road systems, indicate type partitioning structured by local spread
Recent sequence variation in probe binding site affected detection of respiratory syncytial virus group B by real-time RT-PCR
Background
Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses.
Objectives
Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity.
Study design
Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples.
Results
N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses.
Conclusions
An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy
Enrichment approach for unbiased sequencing of respiratory syncytial virus directly from clinical samples
Background: Nasopharyngeal samples contain higher quantities of bacterial and host nucleic acids relative to viruses; presenting challenges during virus metagenomics sequencing, which underpins agnostic sequencing protocols. We aimed to develop a viral enrichment protocol for unbiased whole-genome sequencing of respiratory syncytial virus (RSV) from nasopharyngeal samples using the Oxford Nanopore Technology (ONT) MinION platform.
Methods: We assessed two protocols using RSV positive samples. Protocol 1 involved physical pre-treatment of samples by centrifugal processing before RNA extraction, while Protocol 2 entailed direct RNA extraction without prior enrichment. Concentrates from Protocol 1 and RNA extracts from Protocol 2 were each divided into two fractions; one was DNase treated while the other was not. RNA was then extracted from both concentrate fractions per sample and RNA from both protocols converted to cDNA, which was then amplified using the tagged Endoh primers through Sequence-Independent Single-Primer Amplification (SISPA) approach, a library prepared, and sequencing done. Statistical significance during analysis was tested using the Wilcoxon signed-rank test.
Results: DNase-treated fractions from both protocols recorded significantly reduced host and bacterial contamination unlike the untreated fractions (in each protocol p<0.01). Additionally, DNase treatment after RNA extraction (Protocol 2) enhanced host and bacterial read reduction compared to when done before (Protocol 1). However, neither protocol yielded whole RSV genomes. Sequenced reads mapped to parts of the nucleoprotein (N gene) and polymerase complex (L gene) from Protocol 1 and 2, respectively.
Conclusions: DNase treatment was most effective in reducing host and bacterial contamination, but its effectiveness improved if done after RNA extraction than before. We attribute the incomplete genome segments to amplification biases resulting from the use of short length random sequence (6 bases) in tagged Endoh primers. Increasing the length of the random nucleotides from six hexamers to nine or 12 in future studies may reduce the coverage biases
Molecular epidemiology of human rhinovirus from one-year surveillance within a school setting in rural coastal Kenya
Background
Human rhinovirus (HRV) is the most common cause of the common cold but may also lead to more severe respiratory illness in vulnerable populations. The epidemiology and genetic diversity of HRV within a school setting have not been previously described.
Objective
To characterise HRV molecular epidemiology in primary school in a rural location of Kenya.
Methods
Between May 2017 to April 2018, over three school terms, we collected 1859 nasopharyngeal swabs (NPS) from pupils and teachers with symptoms of acute respiratory infection in a public primary school in Kilifi County, coastal Kenya. The samples were tested for HRV using real-time RT-PCR. HRV positive samples were sequenced in the VP4/VP2 coding region for species and genotype classification.
Results
A total of 307 NPS (16.4%) from 164 individuals were HRV positive, and 253 (82.4%) were successfully sequenced. The proportion of HRV in the lower primary classes was higher (19.8%) than upper primary classes (12.2%), p-value &0.001. HRV-A was the most common species (134/253, 53.0%), followed by HRV-C (73/253, 28.9%) and HRV-B (46/253, 18.2%). Phylogenetic analysis identified 47 HRV genotypes. The most common genotypes were A2 and B70. Numerous (up to 22 in one school term) genotypes circulated simultaneously, there was no individual re-infection with the same genotype, and no genotype was detected in all three school terms.
Conclusion
HRV was frequently detected among school-going children with mild ARI symptoms, and particularly in the younger age groups (&5-year-olds). Multiple HRV introductions were observed characterised by the considerable genotype diversity
Evolution of respiratory syncytial virus genotype BA in Kilifi, Kenya, 15 years on
Respiratory syncytial virus (RSV) is recognised as a leading cause of severe acute respiratory disease and deaths among infants and vulnerable adults. Clinical RSV isolates can be divided into several known genotypes. RSV genotype BA, characterised by a 60-nucleotide duplication in the G glycoprotein gene, emerged in 1999 and quickly disseminated globally replacing other RSV group B genotypes. Continual molecular epidemiology is critical to understand the evolutionary processes maintaining the success of the BA viruses. We analysed 735 G gene sequences from samples collected from paediatric patients in Kilifi, Kenya, between 2003 and 2017. The virus population comprised of several genetically distinct variants (n = 56) co-circulating within and between epidemics. In addition, there was consistent seasonal fluctuations in relative genetic diversity. Amino acid changes increasingly accumulated over the surveillance period including two residues (N178S and Q180R) that mapped to monoclonal antibody 2D10 epitopes, as well as addition of putative N-glycosylation sequons. Further, switching and toggling of amino acids within and between epidemics was observed. On a global phylogeny, the BA viruses from different countries form geographically isolated clusters suggesting substantial localized variants. This study offers insights into longitudinal population dynamics of a globally endemic RSV genotype within a discrete location