25 research outputs found

    Lifetime effects and satellites in the photoelectron spectrum of tungsten metal

    Get PDF
    Tungsten (W) is an important and versatile transition metal and has a firm place at the heart of many technologies. A popular experimental technique for the characterization of tungsten and tungsten-based compounds is x-ray photoelectron spectroscopy (XPS), which enables the assessment of chemical states and electronic structure through the collection of core level and valence band spectra. However, in the case of tungsten metal, open questions remain regarding the origin, nature, and position of satellite features that are prominent in the photoelectron spectrum. These satellites are a fingerprint of the electronic structure of the material and have not been thoroughly investigated, at times leading to their misinterpretation. The present work combines high-resolution soft and hard x-ray photoelectron spectroscopy (SXPS and HAXPES) with reflected electron energy loss spectroscopy (REELS) and a multitiered ab initio theoretical approach, including density functional theory (DFT) and many-body perturbation theory (G0W0 and GW + C ), to disentangle the complex set of experimentally observed satellite features attributed to the generation of plasmons and interband transitions. This combined experiment-theory strategy is able to uncover previously undocumented satellite features, improving our understanding of their direct relationship to tungsten's electronic structure. Furthermore, it lays the groundwork for future studies into tungsten-based mixed-metal systems and holds promise for the reassessment of the photoelectron spectra of other transition and post-transition metals, where similar questions regarding satellite features remain.CK acknowledges the support from the Department of Chemistry, UCL. NKF acknowledges support from the Engineering and Physical Sciences Research Council (EP/L015277/1). AR acknowledges the support fromthe Analytical Chemistry Trust Fund for her CAMS-UK Fellowship. LER acknowledges support from an EPSRC Early Career Research Fellowship (EP/P033253/1). JL and JMK acknowledge funding from EPSRC under Grant No. EP/R002010/1 and from a Royal Society University Research Fellowship (URF/R/191004). This work used the ARCHER UK National Supercomputing Service via JL’s membership of the HEC Materials Chemistry Consortium of UK, which is funded by EPSRC (EP/L000202). JJGM and SM acknowledge the support from the FusionCAT project (001-P-001722) cofinanced by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of total cost eligible, the access to computational resources at MareNostrum and the technical support provided by BSC (RES-QS-2020-3-0026). Part of this work was carried out using supercomputer resources provided under the EU-JA Broader Approach collaboration in the Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC)Peer Reviewed"Article signat per 13 autors/es: C. Kalha, L. E. Ratcliff, J. J. GutiĂ©rrez Moreno, S. Mohr, M. Mantsinen, N. K. Fernando, P. K. Thakur, T.-L. Lee, H.-H. Tseng, T. S. Nunney, J. M. Kahk, J. Lischner, and A. Regoutz"Postprint (author's final draft

    Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors

    Get PDF
    Lab-on-Chip technology comprises one of the most promising technologies enabling the widespread adoption of Point-of-Care testing in routine clinical practice. However, until now advances in Lab-on-Chip have not been translated to the anticipated degree to commercialized tools, with integrated device mass manufacturing cost still not at a competitive level for several key clinical applications. Lab-on-PCB is currently considered as a candidate technology addressing this issue, owing to its intuitive compatibility with electronics, seamless integration of electrochemical biosensors and the extensive experience regarding industrial manufacturing processes. Inkjet-printing in particular is a compatible fabrication method, widening the range of electronic materials available and thus enabling seamlessly integrated ultrasensitive electronic detection. To this end, in this work stable pseudo-reference electrodes are fabricated for the first time by means of commercial inkjet-printing on a PCB-integrated electrochemical biosensing platform. SEM and XPS analysis are employed to characterize the electrodes' structure and composition and identify any special characteristics, compared to published work on alternative substrates. Additionally, this paper analyzes integrated reference electrodes from a new perspective, focusing mainly on their characteristics in real-life operation: chemical sintering as opposed to high budget thermal one, stability under continuous flow, pH dependency and bias stress effects on electrode instability, a parameter often overlooked in electrochemical biosensors

    Capturing the Dynamics of Ti Diffusion Across Ti <sub>x</sub> W <sub>1−x</sub> /Cu Heterostructures using X‐Ray Photoelectron Spectroscopy

    Get PDF
    Interdiffusion phenomena between adjacent materials are highly prevalent in semiconductor device architectures and can present a major reliability challenge for the industry. To fully capture these phenomena, experimental approaches must go beyond static and post-mortem studies to include in situ and in-operando setups. Here, soft and hard X-ray photoelectron spectroscopy (SXPS and HAXPES) is used to monitor diffusion in real-time across a proxy device. The device consists of a Si/SiO2/TixW1−x(300 nm)/Cu(25 nm) thin film material stack, with the TixW1−x film (x = 0.054, 0.115, 0.148) acting as a diffusion barrier between Si and Cu. The interdiffusion is monitored through the continuous collection of spectra whilst in situ annealing to 673 K. Ti within the TiW is found to be highly mobile during annealing, diffusing out of the barrier and accumulating at the Cu surface. Increasing the Ti concentration within the TixW1−x film increases the quantity of accumulated Ti, and Ti is first detected at the Cu surface at temperatures as low as 550 K. Surprisingly, at low Ti concentrations (x = 0.054), W is also mobile and diffuses alongside Ti. By monitoring the Ti 1s core level with HAXPES, the surface-accumulated Ti was observed to undergo oxidation even under ultra-high vacuum conditions, highlighting the reactivity of Ti in this system. These results provide crucial evidence for the importance of diffusion barrier composition on their efficacy during device application, delivering insights into the mechanisms underlying their effectiveness and limitations

    Internal wettability investigation of mesoporous silica materials by ellipsometric porosimetry

    Get PDF
    Silica-based mesoporous films have been widely applied in the fabrication of advanced functional materials, such as anti-reflective coatings, bio-, and chemical sensing devices, due to their unique properties, e.g., high surface area, controlled porosity, and the ease and tailorability of their synthesis. Precise knowledge of their pore architecture is crucial, highlighting the need for accurate characterization tools. In this sense, ellipsometric porosimetry represents a powerful and versatile characterization platform, providing access to reliable information about total porosity, pore size, pore size dispersity, mechanical properties (Young's modulus) and surface area of a great variety of mesoporous thin films. While the underlying framework of modeling capillary condensation via the Kelvin equation is well established, one descriptor, the internal wettability of mesoporous architectures remains a challenging variable for reliable material characterization. Wetting on the nanoscale cannot be observed via the traditional drop-shape method, while approximating internal wetting by the macroscopic property can be inaccurate as the two wetting behaviors do not necessarily correlate. Herein, we present a method based on vacuum ellipsometric porosimetry for the determination of the internal contact angle of functionalized mesoporous silica thin films. Tuning of the surface energy for a known mesoporous architecture by methyl-functionalization enabled us to relate differences in the pore filling for various adsorptives (water, methanol, toluene, cyclohexane) to their internal contact angles. Our study serves as a guide for generalized internal contact angle determination suitable for a wide range of organic adsorptives and mesoporous sorbent materials

    The Chemistry of Cu3N and Cu3PdN Nanocrystals

    Get PDF
    The precursor conversion chemistry and surface chemistry of Cu3 N and Cu3 PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu3 N. We find that oleylamine is both a reductant and a nitrogen source. Oleylamine is oxidized by nitrate to a primary aldimine, which reacts further with excess oleylamine to a secondary aldimine, eliminating ammonia. Ammonia reacts with Cu(I) to form Cu3 N. Third, we investigated the surface chemistry and find a mixed ligand shell of aliphatic amines and carboxylates (formed in situ). While the carboxylates appear tightly bound, the amines are easily desorbed from the surface. Finally, we show that doping with palladium decreases the band gap and the material becomes semi-metallic. These results bring insight into the chemistry of metal nitrides and might help the development of other metal nitride nanocrystals

    The Chemistry of Cu3N and Cu3PdN Nanocrystals

    Get PDF
    The precursor conversion chemistry and surface chemistry of Cu3 N and Cu3 PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu3 N. We find that oleylamine is both a reductant and a nitrogen source. Oleylamine is oxidized by nitrate to a primary aldimine, which reacts further with excess oleylamine to a secondary aldimine, eliminating ammonia. Ammonia reacts with Cu(I) to form Cu3 N. Third, we investigated the surface chemistry and find a mixed ligand shell of aliphatic amines and carboxylates (formed in situ). While the carboxylates appear tightly bound, the amines are easily desorbed from the surface. Finally, we show that doping with palladium decreases the band gap and the material becomes semi-metallic. These results bring insight into the chemistry of metal nitrides and might help the development of other metal nitride nanocrystals

    Exploiting Organometallic Chemistry to Functionalize Small Cuprous Oxide Colloidal Nanocrystals

    Get PDF
    The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)2, M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, 19F NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies

    Satellites in the Ti 1s core level spectra of SrTiO3 and TiO2

    Get PDF
    Satellites in core level spectra of photoelectron spectroscopy (PES) can provide crucial information on the electronic structure and chemical bonding in materials, particularly in transition metal oxides. This paper explores satellites of the Ti 1s and 2p core level spectra of SrTiO3 and TiO2. Conventionally, soft x-ray PES (SXPS) probes the Ti 2p core level; however, it is not ideal to fully capture satellite features due to its inherent spin-orbit splitting (SOS). Here, hard x-ray PES (HAXPES) provides access to the Ti 1s spectrum instead, which allows us to study intrinsic charge responses upon core-hole creation without the complication from SOS and with favorable intrinsic linewidths. The experimental spectra are theoretically analyzed by two impurity models, including an Anderson impurity model (AIM) built on local density approximation (LDA) and dynamical mean-field theory (DMFT), and a conventional TiO6 cluster model. The theoretical results emphasize the importance of explicit inclusion of higher-order Ti-O charge-transfer processes beyond the nearest-neighboring Ti-O bond to simulate the core level spectra of SrTiO3 and TiO2. The AIM approach with continuous bath orbitals provided by LDA+DMFT represents the experimental spectra well. Crucially, with the aid of the LDA+DMFT method, this paper provides a robust prescription of how to use the computationally cheap cluster model in fitting analyses of core level spectra

    Thermal and oxidation stability of TixW1−x diffusion barriers investigated by soft and hard x-ray photoelectron spectroscopy

    Get PDF
    The binary alloy of titanium-tungsten (TiW) is an established diffusion barrier in high-power semiconductor devices, owing to its ability to suppress the diffusion of copper from the metallization scheme into the surrounding silicon substructure. However, little is known about the response of TiW to high-temperature events or its behavior when exposed to air. Here, a combined soft and hard x-ray photoelectron spectroscopy (XPS) characterization approach is used to study the influence of post-deposition annealing and titanium concentration on the oxidation behavior of a 300 nm-thick TiW film. The combination of both XPS techniques allows for the assessment of the chemical state and elemental composition across the surface and bulk of the TiW layer. The findings show that in response to high-temperature annealing, titanium segregates out of the mixed metal system and upwardly migrates, accumulating at the TiW/air interface. Titanium shows remarkably rapid diffusion under relatively short annealing timescales, and the extent of titanium surface enrichment is increased through longer annealing periods or by increasing the bulk titanium concentration. Surface titanium enrichment enhances the extent of oxidation both at the surface and in the bulk of the alloy due to the strong gettering ability of titanium. Quantification of the soft x-ray photoelectron spectra highlights the formation of three tungsten oxidation environments, attributed to WO2, WO3, and a WO3 oxide coordinated with a titanium environment. This combinatorial characterization approach provides valuable insights into the thermal and oxidation stability of TiW alloys from two depth perspectives, aiding the development of future device technologies.C.K. acknowledges the support from the Department of Chemistry, UCL. N.K.F. acknowledges support from the Engineering and Physical Sciences Research Council (No. EP/L015277/1). J.J.G.M. and S.M. acknowledge the support from the FusionCAT project (No. 001-P-001722) co-financed by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014–2020 with a grant of 50% of total cost eligible, the access to computational resources at MareNostrum and the technical support provided by BSC (No. RES-QS-2020-3-0026). L.E.R. acknowledges support from an EPSRC Early Career Research Fellowship (No. EP/P033253/1) and the Thomas Young Centre under Grant No. TYC-101. A.R. acknowledges the support from the Analytical Chemistry Trust Fund for her CAMS-UK Fellowship. We acknowledge Diamond Light Source for time on Beamline I09 under Proposal No. SI19885-1. The authors would like to thank Dave McCue, I09 beamline technician, for his support of the experiments.Peer Reviewed"Article signat per 13 autors/es: C. Kalha, S. Bichelmaier, N. K. Fernando, J. V. Berens, P. K. Thakur, T.-L. Lee, J. J. GutiĂ©rrez Moreno, S. Mohr, L. E. Ratcliff, M. Reisinger, J. Zechner, M. Nelhiebel, and A. Regoutz"Postprint (author's final draft
    corecore