417 research outputs found
Parity Violation in Proton-Proton Scattering
Measurements of parity-violating longitudinal analyzing powers (normalized
asymmetries) in polarized proton-proton scattering provide a unique window on
the interplay between the weak and strong interactions between and within
hadrons. Several new proton-proton parity violation experiments are presently
either being performed or are being prepared for execution in the near future:
at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at
230 MeV and near 1.3 GeV. These experiments are intended to provide stringent
constraints on the set of six effective weak meson-nucleon coupling constants,
which characterize the weak interaction between hadrons in the energy domain
where meson exchange models provide an appropriate description. The 221 MeV is
unique in that it selects a single transition amplitude (3P2-1D2) and
consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The
TRIUMF 221 MeV proton-proton parity violation experiment is described in some
detail. A preliminary result for the longitudinal analyzing power is Az = (1.1
+/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are
commented on. The anomaly at 6 GeV/c requires that a new multi-GeV
proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk
at QULEN97, International Conference on Quark Lepton Nuclear Physics --
Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka,
Japan May 20--23, 199
Nitrate stable isotopes and major ions in snow and ice samples from four Svalbard sites
Increasing reactive nitrogen (N-r) deposition in the Arctic may adversely impact N-limited ecosystems. To investigate atmospheric transport of N-r to Svalbard, Norwegian Arctic, snow and firn samples were collected from glaciers and analysed to define spatial and temporal variations (1 10 years) in major ion concentrations and the stable isotope composition (delta N-15 and delta O-18) of nitrate (NO3-) across the archipelago. The delta N-15(NO3-) and delta O-18(NO3-) averaged -4 parts per thousand and 67 parts per thousand in seasonal snow (2010-11) and -9 parts per thousand and 74 parts per thousand in firn accumulated over the decade 2001-2011. East-west zonal gradients were observed across the archipelago for some major ions (non-sea salt sulphate and magnesium) and also for delta N-15(NO3-) and delta O-18(NO3-) in snow, which suggests a different origin for air masses arriving in different sectors of Svalbard. We propose that snowfall associated with long-distance air mass transport over the Arctic Ocean inherits relatively low delta N-15(NO3-) due to in-transport N isotope fractionation. In contrast, faster air mass transport from the north-west Atlantic or northern Europe results in snowfall with higher delta N-15(NO3-) because in-transport fractionation of N is then time-limited
Heliospheric Transport of Neutron-Decay Protons
We report on new simulations of the transport of energetic protons
originating from the decay of energetic neutrons produced in solar flares.
Because the neutrons are fast-moving but insensitive to the solar wind magnetic
field, the decay protons are produced over a wide region of space, and they
should be detectable by current instruments over a broad range of longitudes
for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to
the Sun are expected to see orders-of magnitude higher intensities than those
at the Earth-Sun distance. The current solar cycle should present an excellent
opportunity to observe neutron-decay protons with multiple spacecraft over
different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar
Physic
Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering
We present a detailed analytical study of ultra-relativistic neutrinos in
cosmological perturbation theory and of the observable signatures of
inhomogeneities in the cosmic neutrino background. We note that a modification
of perturbation variables that removes all the time derivatives of scalar
gravitational potentials from the dynamical equations simplifies their solution
notably. The used perturbations of particle number per coordinate, not proper,
volume are generally constant on superhorizon scales. In real space an
analytical analysis can be extended beyond fluids to neutrinos.
The faster cosmological expansion due to the neutrino background changes the
acoustic and damping angular scales of the cosmic microwave background (CMB).
But we find that equivalent changes can be produced by varying other standard
parameters, including the primordial helium abundance. The low-l integrated
Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of
neutrino perturbations suppresses the CMB acoustic peaks for the multipoles
with l>~200 while it enhances the amplitude of matter fluctuations on these
scales. In addition, the perturbations of relativistic neutrinos generate a
*unique phase shift* of the CMB acoustic oscillations that for adiabatic
initial conditions cannot be caused by any other standard physics. The origin
of the shift is traced to neutrino free-streaming velocity exceeding the sound
speed of the photon-baryon plasma. We find that from a high resolution, low
noise instrument such as CMBPOL the effective number of light neutrino species
can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on
the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this first part, we present the results of the
pion-induced reactions and the extracted resonance and background properties
with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Constraining the dark energy dynamics with the cosmic microwave background bispectrum
We consider the influence of the dark energy dynamics at the onset of cosmic
acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the
weak lensing effect induced by structure formation. We study the line of sight
behavior of the contribution to the bispectrum signal at a given angular
multipole : we show that it is non-zero in a narrow interval centered at a
redshift satisfying the relation , where the
wavenumber corresponds to the scale entering the non-linear phase, and is
the cosmological comoving distance. The relevant redshift interval is in the
range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal
amplitude, reflecting the perturbation dynamics, is a function of the
cosmological expansion rate at those epochs, probing the dark energy equation
of state redshift dependence independently on its present value. We provide a
worked example by considering tracking inverse power law and SUGRA Quintessence
scenarios, having sensibly different redshift dynamics and respecting all the
present observational constraints. For scenarios having the same present
equation of state, we find that the effect described above induces a projection
feature which makes the bispectra shifted by several tens of multipoles, about
10 times more than the corresponding effect on the ordinary CMB angular power
spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D,
one figure improve
Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces
Faddeev equations for elastic Nd scattering have been solved using modern NN
forces combined with the Tucson-Melbourne two-pion exchange three-nucleon
force, with a modification thereof closer to chiral symmetry and the Urbana IX
three-nucleon force. Theoretical predictions for the differential cross section
and several spin observables using NN forces only and NN forces combined with
three-nucleon force models are compared to each other and to the existing data.
A wide range of energies from 3 to 200 MeV is covered. Especially at the higher
energies striking three-nucleon force effects are found, some of which are
supported by the still rare set of data, some are in conflict with data and
thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and
reference
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995
Weak Lensing and CMB: Parameter forecasts including a running spectral index
We use statistical inference theory to explore the constraints from future
galaxy weak lensing (cosmic shear) surveys combined with the current CMB
constraints on cosmological parameters, focusing particularly on the running of
the spectral index of the primordial scalar power spectrum, . Recent
papers have drawn attention to the possibility of measuring by
combining the CMB with galaxy clustering and/or the Lyman- forest. Weak
lensing combined with the CMB provides an alternative probe of the primordial
power spectrum. We run a series of simulations with variable runnings and
compare them to semi-analytic non-linear mappings to test their validity for
our calculations. We find that a ``Reference'' cosmic shear survey with
and galaxies per steradian can reduce the
uncertainty on and by roughly a factor of 2 relative to the
CMB alone. We investigate the effect of shear calibration biases on lensing by
including the calibration factor as a parameter, and show that for our
Reference Survey, the precision of cosmological parameter determination is only
slightly degraded even if the amplitude calibration is uncertain by as much as
5%. We conclude that in the near future weak lensing surveys can supplement the
CMB observations to constrain the primordial power spectrum.Comment: 12 pages, 10 figures, revtex4. Final form to appear in Phys Rev
Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis
Masses, widths and photocouplings of baryon resonances are determined in a
coupled-channel partial wave analysis of a large variety of data. The
Bonn-Gatchina partial wave formalism is extended to include a decomposition of
t- and u-exchange amplitudes into individual partial waves. The multipole
transition amplitudes for and are
given and compared to results from other analyses.Comment: 18 pages, 14 figure
- …