609 research outputs found
Three point SUSY Ward identities without Ghosts
We utilise a non-local gauge transform which renders the entire action of
SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing
condition, to derive two- and three-point ghost-free SUSY Ward identities in
SUSY QED. We use the cluster decomposition principle to find the Green's
function Ward identities and then takes linear combinations of the latter to
derive identities for the proper functions.Comment: 20 pages, no figures, typos correcte
Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles
We performed for the first time stereoscopic triangulation of coronal loops
in active regions over the entire range of spacecraft separation angles
(, and
). The accuracy of stereoscopic correlation depends mostly on the
viewing angle with respect to the solar surface for each spacecraft, which
affects the stereoscopic correspondence identification of loops in image pairs.
From a simple theoretical model we predict an optimum range of , which is also experimentally confirmed. The best
accuracy is generally obtained when an active region passes the central
meridian (viewed from Earth), which yields a symmetric view for both STEREO
spacecraft and causes minimum horizontal foreshortening. For the extended
angular range of we find a mean 3D
misalignment angle of of stereoscopically
triangulated loops with magnetic potential field models, and for a force-free field model, which is partly caused by
stereoscopic uncertainties . We predict optimum
conditions for solar stereoscopy during the time intervals of 2012--2014,
2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure
Quasi-Periodic Releases of Streamer Blobs and Velocity Variability of the Slow Solar Wind near the Sun
We search for persistent and quasi-periodic release events of streamer blobs
during 2007 with the Large Angle Spectrometric Coronagraph on the \textit{Solar
and Heliospheric Observatory} and assess the velocity of the slow solar wind
along the plasma sheet above the corresponding streamer by measuring the
dynamic parameters of blobs. We find 10 quasi-periodic release events of
streamer blobs lasting for three to four days. In each day of these events, we
observe three-five blobs. The results are in line with previous studies using
data observed near the last solar minimum. Using the measured blob velocity as
a proxy for that of the mean flow, we suggest that the velocity of the
background slow solar wind near the Sun can vary significantly within a few
hours. This provides an observational manifestation of the large velocity
variability of the slow solar wind near the Sun.Comment: 14 pages, 5 figures, accepted by Soalr Physic
Automated Detection of Coronal Loops using a Wavelet Transform Modulus Maxima Method
We propose and test a wavelet transform modulus maxima method for the au-
tomated detection and extraction of coronal loops in extreme ultraviolet images
of the solar corona. This method decomposes an image into a number of size
scales and tracks enhanced power along each ridge corresponding to a coronal
loop at each scale. We compare the results across scales and suggest the
optimum set of parameters to maximise completeness while minimising detection
of noise. For a test coronal image, we compare the global statistics (e.g.,
number of loops at each length) to previous automated coronal-loop detection
algorithms
Examining Periodic Solar Wind Density Structures Observed in the SECCHI Heliospheric Imagers
We present an analysis of small-scale, periodic, solar-wind density
enhancements (length-scales as small as \approx 1000 Mm) observed in images
from the Heliospheric Imager (HI) aboard STEREO A. We discuss their possible
relationship to periodic fluctuations of the proton density that have been
identified at 1 AU using in-situ plasma measurements. Specifically, Viall,
Kepko, and Spence (2008) examined 11 years of in-situ solar-wind density
measurements at 1 AU and demonstrated that not only turbulent structures, but
also non-turbulent periodic density structures exist in the solar wind with
scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall,
Spence, and Kasper (2009) analyzed the {\alpha} to proton solar-wind abundance
ratio measured during one such event of periodic density structures,
demonstrating that the plasma behavior was highly suggestive that either
temporally or spatially varying coronal source plasma created those density
structures. Large periodic density structures observed at 1 AU, which were
generated in the corona, can be observable in coronal and heliospheric
white-light images if they possess sufficiently high density contrast. Indeed,
we identify such periodic density structures as they enter the HI field of view
and follow them as they advect with the solar wind through the images. The
smaller periodic density structures that we identify in the images are
comparable in size to the larger structures analyzed in-situ at 1 AU, yielding
further evidence that periodic density enhancements are a consequence of
coronal activity as the solar wind is formed.Comment: 15 pages, 12 figures. The final publication is available at
http://www.springerlink.co
Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency
We have performed a statistical study of Type III radio bursts observed
by Solar TErrestrial RElations Observatory (STEREO)/Waves between May 2007 and
February 2013. We have investigated the flux density between kHz and
MHz. Both high- and low-frequency cutoffs have been observed in of
events suggesting an important role of propagation. As already reported by
previous authors, we observed that the maximum flux density occurs at MHz on
both spacecraft. We have developed a simplified analytical model of the flux
density as a function of radial distance and compared it to the STEREO/Waves
data.Comment: published in Solar Physic
From Predicting Solar Activity to Forecasting Space Weather: Practical Examples of Research-to-Operations and Operations-to-Research
The successful transition of research to operations (R2O) and operations to
research (O2R) requires, above all, interaction between the two communities. We
explore the role that close interaction and ongoing communication played in the
successful fielding of three separate developments: an observation platform, a
numerical model, and a visualization and specification tool. Additionally, we
will examine how these three pieces came together to revolutionize
interplanetary coronal mass ejection (ICME) arrival forecasts. A discussion of
the importance of education and training in ensuring a positive outcome from
R2O activity follows. We describe efforts by the meteorological community to
make research results more accessible to forecasters and the applicability of
these efforts to the transfer of space-weather research.We end with a
forecaster "wish list" for R2O transitions. Ongoing, two-way communication
between the research and operations communities is the thread connecting it
all.Comment: 18 pages, 3 figures, Solar Physics in pres
Heliospheric Transport of Neutron-Decay Protons
We report on new simulations of the transport of energetic protons
originating from the decay of energetic neutrons produced in solar flares.
Because the neutrons are fast-moving but insensitive to the solar wind magnetic
field, the decay protons are produced over a wide region of space, and they
should be detectable by current instruments over a broad range of longitudes
for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to
the Sun are expected to see orders-of magnitude higher intensities than those
at the Earth-Sun distance. The current solar cycle should present an excellent
opportunity to observe neutron-decay protons with multiple spacecraft over
different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar
Physic
A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections
In this paper, with a survey through the Large Angle and Spectrometric
Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma
blobs flowing outwards sequentially along a bright coronal ray in the wake of a
coronal mass ejection. The ray is believed to be associated with the current
sheet structure that formed as a result of solar eruption, and the blobs are
products of magnetic reconnection occurring along the current sheet. The ray
morphology and blob dynamics are investigated statistically. It is found that
the apparent angular widths of the rays at a fixed time vary in a range of
2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs,
respectively, and the observed durations of the events vary from 12 h to a few
days with an average of 27 h. It is also found, based on the analysis of blob
motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated,
and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our
blobs and those that are observed above the tip of a helmet streamer, we find
that the speeds and accelerations of the blobs in these two cases differ
significantly. It is suggested that these differences of the blob dynamics stem
from the associated magnetic reconnection involving different magnetic field
configurations and triggering processes.Comment: 12 pages, 6 figures, accepted by Solar Physic
3D evolution of a filament disappearance event observed by STEREO
A filament disappearance event was observed on 22 May 2008 during our recent
campaign JOP 178. The filament, situated in the southern hemisphere, showed
sinistral chirality consistent with the hemispheric rule. The event was well
observed by several observatories in particular by THEMIS. One day before the
disappearance, H observations showed up and down flows in adjacent
locations along the filament, which suggest plasma motions along twisted flux
rope. THEMIS and GONG observations show shearing photospheric motions leading
to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation
angle 52.4 degrees, showed quite different views of this untwisting flux rope
in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament
during its eruption phase using STEREO EUV He II 304 \AA\ images and find that
the filament was highly inclined to the solar normal. The He II 304 \AA\ movies
show individual threads, which oscillate and rise to an altitude of about 120
Mm with apparent velocities of about 100 km s, during the rapid
evolution phase. Finally, as the flux rope expands into the corona, the
filament disappears by becoming optically thin to undetectable levels. No CME
was detected by STEREO, only a faint CME was recorded by LASCO at the beginning
of the disappearance phase at 02:00 UT, which could be due to partial filament
eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath
the filament prior to the disappearance phase, suggesting magnetic reconnection
below the flux rope
- …