7 research outputs found

    ADAMS project: a genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis based in the UK

    Get PDF
    PURPOSE: Genetic studies of multiple sclerosis (MS) susceptibility and severity have focused on populations of European ancestry. Studying MS genetics in other ancestral groups is necessary to determine the generalisability of these findings. The genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis (ADAMS) project aims to gather genetic and phenotypic data on a large cohort of ancestrally-diverse individuals with MS living in the UK. PARTICIPANTS: Adults with self-reported MS from diverse ancestral backgrounds. Recruitment is via clinical sites, online (https://app.mantal.co.uk/adams) or the UK MS Register. We are collecting demographic and phenotypic data using a baseline questionnaire and subsequent healthcare record linkage. We are collecting DNA from participants using saliva kits (Oragene-600) and genotyping using the Illumina Global Screening Array V.3. FINDINGS TO DATE: As of 3 January 2023, we have recruited 682 participants (n=446 online, n=55 via sites, n=181 via the UK MS Register). Of this initial cohort, 71.2% of participants are female, with a median age of 44.9 years at recruitment. Over 60% of the cohort are non-white British, with 23.5% identifying as Asian or Asian British, 16.2% as Black, African, Caribbean or Black British and 20.9% identifying as having mixed or other backgrounds. The median age at first symptom is 28 years, and median age at diagnosis is 32 years. 76.8% have relapsing-remitting MS, and 13.5% have secondary progressive MS. FUTURE PLANS: Recruitment will continue over the next 10 years. Genotyping and genetic data quality control are ongoing. Within the next 3 years, we aim to perform initial genetic analyses of susceptibility and severity with a view to replicating the findings from European-ancestry studies. In the long term, genetic data will be combined with other datasets to further cross-ancestry genetic discoveries

    The ADAMS project - a genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis based in the United Kingdom

    Get PDF
    Purpose Genetic studies of multiple sclerosis (MS) susceptibility and severity have focused on populations of European ancestry. Studying MS genetics in other ancestral groups is necessary to determine the generalisability of these findings. The genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis (ADAMS) project aims to gather genetic and phenotypic data on a large cohort of ancestrally-diverse individuals with MS living in the UK. Participants Adults with self-reported MS from diverse ancestral backgrounds. Recruitment is via clinical sites, online (https://app.mantal.co.uk/adams) or the UK MS Register. We are collecting demographic and phenotypic data using a baseline questionnaire and subsequent healthcare record linkage. We are collecting DNA from participants using saliva kits (Oragene-600) and genotyping using the Illumina Global Screening Array V.3. Findings to date As of 3 January 2023, we have recruited 682 participants (n=446 online, n=55 via sites, n=181 via the UK MS Register). Of this initial cohort, 71.2% of participants are female, with a median age of 44.9 years at recruitment. Over 60% of the cohort are non-white British, with 23.5% identifying as Asian or Asian British, 16.2% as Black, African, Caribbean or Black British and 20.9% identifying as having mixed or other backgrounds. The median age at first symptom is 28 years, and median age at diagnosis is 32 years. 76.8% have relapsing–remitting MS, and 13.5% have secondary progressive MS. Future plans Recruitment will continue over the next 10 years. Genotyping and genetic data quality control are ongoing. Within the next 3 years, we aim to perform initial genetic analyses of susceptibility and severity with a view to replicating the findings from European-ancestry studies. In the long term, genetic data will be combined with other datasets to further cross-ancestry genetic discoveries

    Dermatitis cruris pustulosa et atrophicans

    No full text
    Dermatitis cruris pustulosa et atrophicans (DCPA) is a distinctive type of chronic superficial folliculitis, primarily affecting the lower limbs. It is characterized by symmetrical follicular pustules of both legs, with cutaneous edema, resulting in alopecia, atrophy and scarring. It was first described by Clarke, from West Nigeria, in 1952 and well illustrated in his book "Skin diseases in the African," under the initial label of "Nigerian shin disease." Subsequently, it was described in India as well, in 1964, and continues to be a problem in dermatology clinics across the country. It is predominantly a disease of men and has a high prevalence in some geographical regions; up to 3-4% in Madras, South India. Some unique features that distinguish DCPA from banal pustular folliculitis include its peculiar localization to the legs, extreme chronicity, resistance to therapy and inevitable alopecia and atrophy of the involved skin, with little postinflammatory hyper- or hypopigmentation. Further, even in the presence of extensive lesions, there are no systemic features. Coagulase-positive Staphylococcus aureus is known to have a role in the etiology of DCPA, but the exact etiopathogenesis still needs to be elucidated. Immunological postulates such as hypergammaglobulinemia have been put forward to explain the chronicity of the condition. A number of therapeutic agents have been tried in various studies, including cotrimoxazole, psoralen with ultraviolet A (PUVA) therapy, ciprofloxacin, pentoxifylline, rifampicin, dapsone, minocycline and mupirocin (topical) with variable success rates. Although a well-recognized entity in dermatology clinics in tropical countries, DCPA has received little attention in the dermatological literature and has only a few studies to its credit. Its unique clinical picture, unclear etiopathogenesis and resistance to therapy afford a vast scope for further investigation and study

    ADAMS project: a genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis based in the UK.

    No full text
    Purpose Genetic studies of multiple sclerosis (MS) susceptibility and severity have focused on populations of European ancestry. Studying MS genetics in other ancestral groups is necessary to determine the generalisability of these findings. The genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis (ADAMS) project aims to gather genetic and phenotypic data on a large cohort of ancestrally-diverse individuals with MS living in the UK.Participants Adults with self-reported MS from diverse ancestral backgrounds. Recruitment is via clinical sites, online (https://app.mantal.co.uk/adams) or the UK MS Register. We are collecting demographic and phenotypic data using a baseline questionnaire and subsequent healthcare record linkage. We are collecting DNA from participants using saliva kits (Oragene-600) and genotyping using the Illumina Global Screening Array V.3.Findings to date As of 3 January 2023, we have recruited 682 participants (n=446 online, n=55 via sites, n=181 via the UK MS Register). Of this initial cohort, 71.2% of participants are female, with a median age of 44.9 years at recruitment. Over 60% of the cohort are non-white British, with 23.5% identifying as Asian or Asian British, 16.2% as Black, African, Caribbean or Black British and 20.9% identifying as having mixed or other backgrounds. The median age at first symptom is 28 years, and median age at diagnosis is 32 years. 76.8% have relapsing-remitting MS, and 13.5% have secondary progressive MS.Future plans Recruitment will continue over the next 10 years. Genotyping and genetic data quality control are ongoing. Within the next 3 years, we aim to perform initial genetic analyses of susceptibility and severity with a view to replicating the findings from European-ancestry studies. In the long term, genetic data will be combined with other datasets to further cross-ancestry genetic discoveries
    corecore