17 research outputs found

    High sensitivity double relaxation oscillation superconducting quantum interference devices

    Get PDF
    Double relaxation oscillationsuperconducting quantum interference devices(SQUIDs) (DROSs) have been fabricated with estimated relaxation frequencies up to 14 GHz. Both the intrinsic flux noise and the performance in a flux locked loop with direct voltage readout have been studied. In flux locked loop, a noise level of 0.55 μφ0/√Hz corresponding to an energy sensitivity of 34 h has been obtained for a DROS with a SQUIDinductance of 29 pH. The intrinsic sensitivity improves with increasing relaxation frequency, leveling off to a value of 13 h at relaxation frequencies higher than about 3 GHz

    Ocular dominance affects magnitude of dipole moment: An MEG study

    Get PDF
    横浜栄共済病院脳卒中診療科・脳神経外科To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5±6.1 nAm with left-eye stimulation and 16.1±3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0±5.2 and 21.5±2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe. © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Molecular database for classifying Shorea species (Dipterocarpaceae) and techniques for checking the legitimacy of timber and wood products

    Get PDF
    The extent of tropical forest has been declining, due to over-exploitation and illegal logging activities. Large quantities of unlawfully extracted timber and other wood products have been exported, mainly to developed countries. As part of the export monitoring effort, we have developed methods for extracting and analyzing DNA from wood products, such as veneers and sawn timbers made from dipterocarps, in order to identify the species from which they originated. We have also developed a chloroplast DNA database for classifying Shorea species, which are both ecologically and commercially important canopy tree species in the forests of Southeast Asia. We are able to determine the candidate species of wood samples, based on DNA sequences and anatomical data. The methods for analyzing DNA from dipterocarp wood products may have strong deterrent effects on international trade of illegitimate dipterocarp products. However, the method for analyzing DNA from wood is not perfect for all wood products and need for more improvement, especially for plywood sample. Consequently, there may be benefits for the conservation of tropical forests in Southeast Asia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10265-010-0348-z) contains supplementary material, which is available to authorized users

    Depletion of CD206+ M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration

    Get PDF
    Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-β1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-β signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells

    CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors

    Get PDF
    Adipose tissue resident macrophages have important roles in the maintenance of tissue homeostasis and regulate insulin sensitivity for example by secreting pro-inflammatory or anti-inflammatory cytokines. Here, we show that M2-like macrophages in adipose tissue regulate systemic glucose homeostasis by inhibiting adipocyte progenitor proliferation via the CD206/TGFβ signaling pathway. We show that adipose tissue CD206+ cells are primarily M2-like macrophages, and ablation of CD206+ M2-like macrophages improves systemic insulin sensitivity, which was associated with an increased number of smaller adipocytes. Mice genetically engineered to have reduced numbers of CD206+ M2-like macrophages show a down-regulation of TGFβ signaling in adipose tissue, together with up-regulated proliferation and differentiation of adipocyte progenitors. Our findings indicate that CD206+ M2-like macrophages in adipose tissues create a microenvironment that inhibits growth and differentiation of adipocyte progenitors and, thereby, control adiposity and systemic insulin sensitivity

    MEG responses to sound in guinea pig and mouse

    No full text

    NaOCl-mediated biofunctionalization enhances bone-titanium integration

    No full text
    corecore