61 research outputs found

    Endometrial Response to Conceptus-Derived Estrogen and Interleukin-1β at the Time of Implantation in Pigs

    Get PDF
    The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs

    Spatiotemporal expression and regulation of peptidase inhibitor 3 and secretory leukocyte protease inhibitor at the maternal–fetal interface in pigs

    Get PDF
    Objective Two serine protease inhibitors, peptidase inhibitor 3 (PI3) and secretory leukocyte protease inhibitor (SLPI), play important roles in protease inhibition and antimicrobial activity, but their expression, regulation, and function at the maternal–fetal interface in pigs are not fully understood. Therefore, we determined the expression and regulation of PI3 and SLPI in the endometrium throughout the estrous cycle and at the maternal–fetal interface in pigs. Methods Endometrial tissues during the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during mid to late pregnancy were obtained, and the expression of PI3 and SLPI was analyzed. The effects of the steroid hormones estradiol-17β (E2) and progesterone (P4) on the expression of PI3 and SLPI were determined in endometrial explant cultures. Results PI3 and SLPI were expressed in the endometrium during the estrous cycle and pregnancy, with higher levels during mid to late pregnancy than during the estrous cycle and early pregnancy. Early-stage conceptuses and chorioallantoic tissues during mid to late pregnancy also expressed PI3 and SLPI. PI3 protein and SLPI mRNA were primarily localized to endometrial epithelia. In endometrial explant cultures, the expression of PI3 was induced by increasing doses of P4, and the expression of SLPI was induced by increasing doses of E2 and P4. Conclusion These results suggest that the PI3 and SLPI expressed in the endometrium and conceptus tissues play an important role in antimicrobial activity for fetal protection against potential pathogens and in blocking protease actions to allow epitheliochorial placenta formation

    Matrix metalloproteinases: expression and regulation in the endometrium during the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs

    Get PDF
    Objective Matrix metalloproteinases (MMPs) are a family of endoproteases produced by various tissues and cells and play important roles in angiogenesis, tissue repair, immune response, and endometrial remodeling. However, the expression and function of MMPs in the pig endometrium during the estrous cycle and pregnancy have not been fully elucidated. Thus, we determined the expression, localization, and regulation of MMP2, MMP8, MMP9, MMP12, and MMP13 in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy in pigs. Methods Endometrial tissues during the estrous cycle and pregnancy and conceptus and chorioallantoic tissues during pregnancy were obtained and the expression of MMPs was analyzed. The effects of steroid hormones and cytokines on the expression of MMPs were determined in endometrial explant cultures. Results Expression levels of MMP12 and MMP13 changed during the estrous cycle, while expression of MMP2, MMP9, MMP12, and MMP13 changed during pregnancy. Expression of MMP2, MMP8, and MMP13 mRNAs was cell type-specific at the maternal-conceptus interface. Gelatin zymography showed that enzymatically active MMP2 was present in endometrial tissues. In endometrial explant cultures, estradiol-17β induced the expression of MMP8 and MMP12, progesterone decreased the expression of MMP12, interleukin-1β increased the expression of MMP2, MMP8, MMP9, and MMP13, and interferon-γ increased the expression of MMP2. Conclusion These results suggest that MMPs expressed in response to steroids and cytokines play an important role in the establishment and maintenance of pregnancy by regulating endometrial remodeling and processing bioactive molecules in pigs

    Expression of aldo-keto reductase family 1 member C1 (AKR1C1) gene in porcine ovary and uterine endometrium during the estrous cycle and pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.</p> <p>Methods</p> <p>Rapid amplification of cDNA ends (RACE) experiments were performed to obtain the 5' and 3' ends of the porcine <it>20alpha-HSD </it>cDNA. Reverse-transcriptase-PCR (RT-PCR), real-time PCR, northern blot analysis, and western blot analysis were performed to examine the expression of porcine 20alpha-HSD. Immunohistochemical analysis was also performed to determine the localization in the ovary.</p> <p>Results</p> <p>The porcine 20alpha-HSD cDNA is 957 bp in length and encodes a protein of 319 amino acids. The cloned cDNA was virtually the same as the porcine <it>AKR1C1 </it>gene (337 amino acids) reported recently, and only differed in the C-terminal region (the <it>AKR1C1 </it>gene has a longer C-terminal region than our sequence). The <it>20alpha-HSD </it>gene (from now on referred to as <it>AKR1C1</it>) cloned in this paper encodes a deletion of 4 amino acids, compared with the C-terminal region of <it>AKR1C1 </it>genes from other animals. Porcine AKR1C1 mRNA was expressed on day 5, 10, 12, 15 of the cycle and 0-60 of pregnancy in the ovary. The mRNA was also specifically detected in the uterine endometrium on day 30 of pregnancy. Western blot analysis indicated that the pattern of AKR1C1 protein in the ovary during the estrous cycle and uterus during early pregnancy was similar to that of <it>AKR1C1 </it>mRNA expression. The recombinant protein produced in CHO cells was detected at approximately 37 kDa. Immunohistochemical analysis also revealed that pig AKR1C1 protein was localized in the large luteal cells in the early stages of the estrous cycle and before parturition.</p> <p>Conclusions</p> <p>Our study demonstrated that AKR1C1 mRNA and protein are coordinately expressed in the luteal cell of ovary throughout the estrous cycle and in the uterus on day 30 of pregnancy. Thus, the porcine AKR1C1 gene might control important mechanisms during the estrous cycle.</p

    Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos

    Get PDF
    In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos

    Innate lymphoid cell markers: expression, localization, and regulation at the maternal-conceptus interface in pigs

    No full text
    Background: The regulation of maternal immunity is critical for the establishment and maintenance of successful pregnancy. Among many cell types regulating the immune system, innate lymphoid cells (ILCs) are known to play an important role in innate immunity. Although some reports show that ILCs are present at the maternalconceptus interface in humans and mice, the expression and function of ILCs in the endometrium have not been studied in pigs. Methods: Thus, we determined the expression, localization, and regulation of ILC markers, CD127 (a common marker for ILCs), BCL11B (a ILC2 marker), and RORC (a ILC3 marker) at the maternal-conceptus interface in pigs. Results: The expression of BCL11B and RORC, but not CD127, in the endometrium changed during pregnancy in a stage-specific manner and the expression of CD127, BCL11B, and RORC was greatest on Day 15 during pregnancy. CD127, BCL11B, and RORC were also expressed in conceptus tissues during early pregnancy and in chorioallantoic tissues during the later stage of pregnancy. BCL11B and RORC proteins were localized to specific cells in endometrial stroma. The expression of CD127 and BCL11B, but not RORC, was increased by the increasing doses of interferon-γ (IFNG) in endometrial explants. Conclusions: These results suggest that ILCs present at the maternal-conceptus interface may play a role in the establishment and maintenance of pregnancy by regulating the innate immunity in pigs

    Analysis of cellular communication network factor (CCN) 4 and CCN6 expression in the endometrium during the estrous cycle and at the maternal-conceptus interface in pigs

    No full text
    The cellular communication network factor (CCN) family proteins regulate many biological events such as angiogenesis, tumor growth, placentation, implantation, and embryogenesis. The expression and function of CCN1, CCN2, and CCN3 at the maternal-conceptus interface are established in humans and rodents, but little is known about the role of CCN4 to CCN6 in the reproductive organs in any other species. Several studies in transcriptome analysis in pigs have shown that the expression of CCN4 and CCN6 increases in the endometrium during early pregnancy. However, their expression, regulation, and function in the endometrium throughout the estrous cycle and pregnancy have not been fully understood in pigs. Thus, we determined the expression, localization, and regulation of CCN4 and CCN6 during the estrous cycle and at the maternal-conceptus interface in pigs. We found that the levels of CCN4, but not CCN6, changed during the estrous cycle. The levels of CCN4 were greater during mid- to late pregnancy than in the early stage, and the levels of CCN6 were greatest on Day 15 of pregnancy. CCN4 and CCN6 were detected in conceptus tissues during early pregnancy and in chorioallantoic tissues during the later stage of pregnancy. CCN4 mRNA was mainly localized to epithelial cells, CCN6 mRNAs to epithelial and stromal cells in the endometrium. In endometrial explant cultures, CCN4 expression was increased by progesterone, and CCN6 expression by interferon-γ. These results suggest that CCN4 and CCN6 may play roles in the establishment and maintenance of pregnancy by regulating the endometrial epithelial cell functions in pigs

    Regulation of Expression in the Uterine Endometrium during Early Pregnancy in Pigs

    No full text
    Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6) and calbindin-D9k (S100G), are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy. Thus, we investigated regulation of S100G expression by estrogen and interleukin-1β (IL1B) in the uterine endometrium and conceptus expression of S100G during early pregnancy in pigs. We obtained uterine endometrial tissues from day (D) 12 of the estrous cycle and treated with combinations of steroid hormones, estradiol-17β (E2) and progesterone (P4), and increasing doses of IL1B. Real-time RT-PCR analysis showed that E2 and IL1B increased S100G mRNA levels in the uterine endometrium, and conceptuses expressed S100G mRNA during early pregnancy, as determined by RT-PCR analysis. To determine if endometrial expression of S100G mRNA during the implantation period was affected by the somatic cell nuclear transfer (SCNT) procedure, we compared S100G mRNA levels in the uterine endometrium from gilts with SCNT-derived conceptuses with those from gilts with conceptuses derived from natural mating on D12 of pregnancy. Real-time RT-PCR analysis showed that levels of S100G mRNA in the uterine endometrium from gilts carrying SCNT-derived conceptuses was significantly lower than those from gilts carrying conceptuses derived from natural mating. These results showed that S100G expression in the uterine endometrium was regulated by estrogen and IL1B of conceptus origin, and affected by the SCNT procedure during early pregnancy. These suggest that conceptus signals regulate S100G, an intracellular calcium transport protein, for the establishment of pregnancy in pigs

    Endometrial response to conceptus-derived estrogen and interleukin-1β at the time of implantation in pigs

    Get PDF
    Abstract The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs
    corecore