312 research outputs found
Process Algebra with Layers: Multi-scale Integration Modelling applied to Cancer Therapy
We present a novel Process Algebra designed for multi-scale integration modelling: Process Algebra with Layers (PAL). The unique feature of PAL is the modularisation of scale into integrated layers: Object and Population. An Object can represent a molecule, organelle, cell, tissue, organ or any organism. Populations hold specific types of Object, for example, life stages, cell phases and infectious states. The syntax and semantics of this novel language are presented. A PAL model of the multi-scale system of cell growth and damage from cancer treatment is given. This model allows the analysis of different scales of the system. The Object and Population levels give insight into the length of a cell cycle and cell population growth respectively. The PAL model results are compared to wet laboratory survival fractions of cells given different doses of radiation treatment [1]. This comparison shows how PAL can be used to aid in investigations of cancer treatment in systems biology
Prompt Decays of General Neutralino NLSPs at the Tevatron
Recent theoretical developments have shown that gauge mediation has a much
larger parameter space of possible spectra and mixings than previously
considered. Motivated by this, we explore the collider phenomenology of gauge
mediation models where a general neutralino is the lightest MSSM superpartner
(the NLSP), focusing on the potential reach from existing and future Tevatron
searches. Promptly decaying general neutralino NLSPs can give rise to final
states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey
the final states and determine those where the Tevatron should have the most
sensitivity. We then estimate the reach of existing Tevatron searches in these
final states and discuss new searches (or optimizations of existing ones) that
should improve the reach. Finally we comment on the potential for discovery at
the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous
literatur
Cancer-selective, single agent chemoradiosensitising gold nanoparticles
Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics
Excess Higgs Production in Neutralino Decays
The ATLAS and CMS experiments have recently claimed discovery of a Higgs
boson-like particle at ~5 sigma confidence and are beginning to test the
Standard Model predictions for its production and decay. In a variety of
supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and
the LSP. In natural SUSY models, a light third generation squark decaying
through this chain can lead to large excess Higgs production while evading
existing BSM searches. Such models can be observed at the 8 TeV LHC in channels
exploiting the rare diphoton decays of the Higgs produced in the cascade decay.
Identifying a diphoton resonance in association with missing energy, a lepton,
or b-tagged jets is a promising search strategy for discovery of these models,
and would immediately signal new physics involving production of a Higgs boson.
We also discuss the possibility that excess Higgs production in these SUSY
decays can be responsible for enhancements of up to 50% over the SM prediction
for the observed rate in the existing inclusive diphoton searches, a scenario
which would likely by the end of the 8 TeV run be accompanied by excesses in
the diphoton + lepton/MET and SUSY multi-lepton/b searches and a potential
discovery in a diphoton + 2b search.Comment: 42 pages, 19 figure
Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance.
BACKGROUND: We have previously shown that hypoxia selects for more invasive, apoptosis-resistant LNCaP prostate cancer cells, with upregulation of the osteogenic transcription factor RUNX2 and the anti-apoptotic factor Bcl-2 detected in the hypoxia-selected cells. Following this observation, we questioned through what biological mechanism this occurs. METHODS: We examined the effect of hypoxia on RUNX2 expression and the role of RUNX2 in the regulation of Bcl-2 and apoptosis resistance in prostate cancer. RESULTS: Hypoxia increased RUNX2 expression in vitro, and bicalutamide-treated LNCaP tumours in mice (previously shown to have increased tumour hypoxia) exhibited increased RUNX2 expression. In addition, RUNX2-overexpressing LNCaP cells showed increased cell viability, following bicalutamide and docetaxel treatment, which was inhibited by RUNX2 siRNA; a range of assays demonstrated that this was due to resistance to apoptosis. RUNX2 expression was associated with increased Bcl-2 levels, and regulation of Bcl-2 by RUNX2 was confirmed through chromatin immunoprecipitation (ChIP) binding and reporter assays. Moreover, a Q-PCR array identified other apoptosis-associated genes upregulated in the RUNX2-overexpressing LNCaP cells. CONCLUSION: This study establishes a contributing mechanism for progression of prostate cancer cells to a more apoptosis-resistant and thus malignant phenotype, whereby increased expression of RUNX2 modulates the expression of apoptosis-associated factors, specifically Bcl-2
RECO level \sqrt{s}_{min} and subsystem \sqrt{s}_{min}: improved global inclusive variables for measuring the new physics mass scale in missing energy events at hadron colliders
The variable \sqrt{s}_{min} was originally proposed in arXiv:0812.1042 as a
model-independent, global and fully inclusive measure of the new physics mass
scale in missing energy events at hadron colliders. In the original incarnation
of \sqrt{s}_{min}, however, the connection to the new physics mass scale was
blurred by the effects of the underlying event, most notably initial state
radiation and multiple parton interactions. In this paper we advertize two
improved variants of the \sqrt{s}_{min} variable, which overcome this problem.
First we show that by evaluating the \sqrt{s}_{min} variable at the RECO level,
in terms of the reconstructed objects in the event, the effects from the
underlying event are significantly diminished and the nice correlation between
the peak in the \sqrt{s}_{min}^{(reco)} distribution and the new physics mass
scale is restored. Secondly, the underlying event problem can be avoided
altogether when the \sqrt{s}_{min} concept is applied to a subsystem of the
event which does not involve any QCD jets. We supply an analytic formula for
the resulting subsystem \sqrt{s}_{min}^{(sub)} variable and show that its peak
exhibits the usual correlation with the mass scale of the particles produced in
the subsystem. Finally, we contrast \sqrt{s}_{min} to other popular inclusive
variables such as H_T, M_{Tgen} and M_{TTgen}. We illustrate our discussion
with several examples from supersymmetry, and with dilepton events from top
quark pair production.Comment: 41 pages, 26 figure
The Frequency of Malaria Is Similar among Women Receiving either Lopinavir/Ritonavir or Nevirapine-based Antiretroviral Treatment
HIV protease inhibitors (PIs) show antimalarial activity in vitro and in animals. Whether this translates into a clinical benefit in HIV-infected patients residing in malaria-endemic regions is unknown. We studied the incidence of malaria, as defined by blood smear positivity or a positive Plasmodium falciparum histidine-rich protein 2 antigen test, among 444 HIV-infected women initiating antiretroviral treatment (ART) in the OCTANE trial (A5208; ClinicalTrials.gov: NCT00089505). Participants were randomized to treatment with PI-containing vs. PI-sparing ART, and were followed prospectively for ≥48 weeks; 73% also received cotrimoxazole prophylaxis. PI-containing treatment was not associated with protection against malaria in this study population
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System
During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain
- …