940 research outputs found

    Decomposição de material agronômico em forno de microondas com cavidade empregando ácidos diluídos.

    Get PDF
    Para a determinação dos teores de elementos individuais em amostras agronômicas normalmente é necessária a transformação dos elementos de interesse da matriz orgânica carbonácea em uma forma inorgânica simples. A grande maioria das técnicas analíticas exige que o analito esteja dissolvido em meio líquido. Na escolha de um método ideal para a decomposição de uma amostra, deve-se sempre ter em mente quais os resultados esperados - como teores aproximados dos analitos e a sensibilidade da técnica que se deseja empregar. O método deve ser capaz de disponibilizar completamente o elemento de interesse; ser rápido; os reagentes não devem atacar o recipiente onde é feita a reação, evitando-se as perdas por adsorção e/ou absorção e não conter contaminantes que possam vir a interferir nos resultados. O procedimento adotado deve apresentar o mínimo de insalubridade e periculosidade

    Localization and Mobility Edge in One-Dimensional Potentials with Correlated Disorder

    Full text link
    We show that a mobility edge exists in 1D random potentials provided specific long-range correlations. Our approach is based on the relation between binary correlator of a site potential and the localization length. We give the algorithm to construct numerically potentials with mobility edge at any given energy inside allowed zone. Another natural way to generate such potentials is to use chaotic trajectories of non-linear maps. Our numerical calculations for few particular potentials demonstrate the presence of mobility edges in 1D geometry.Comment: 4 pages in RevTex and 2 Postscript figures; revised version published in Phys. Rev. Lett. 82 (1999) 406

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80μb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)μb and 9±6(stat)-2+2(syst)μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for a WZ resonance, in the fully leptonic final state (electrons or muons), is performed using 139 fb - 1 of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi–Machacek model, produced by WZ fusion, and of a Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell–Yan process. No significant excess over the Standard Model prediction is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF
    This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb−1 of pp collisions collected in 2017 and 1.4 nb−1 of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R = 0.2 and R = 0.4, and only R = 0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R = 0.2 jets are also measured using 1.7 nb−1 of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R = 0.2 over the transverse momentum range of 80–290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions

    A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    The standard model of particle physics1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5–9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (τ)) are well measured and indications of interactions with a second-generation particle (muons, μ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model

    Search for the Exclusive W Boson Hadronic Decays W±→π±γ , W±→K±γ and W±→ρ±γ with the ATLAS Detector

    Get PDF
    corecore