3,313 research outputs found
Object Level Deep Feature Pooling for Compact Image Representation
Convolutional Neural Network (CNN) features have been successfully employed
in recent works as an image descriptor for various vision tasks. But the
inability of the deep CNN features to exhibit invariance to geometric
transformations and object compositions poses a great challenge for image
search. In this work, we demonstrate the effectiveness of the objectness prior
over the deep CNN features of image regions for obtaining an invariant image
representation. The proposed approach represents the image as a vector of
pooled CNN features describing the underlying objects. This representation
provides robustness to spatial layout of the objects in the scene and achieves
invariance to general geometric transformations, such as translation, rotation
and scaling. The proposed approach also leads to a compact representation of
the scene, making each image occupy a smaller memory footprint. Experiments
show that the proposed representation achieves state of the art retrieval
results on a set of challenging benchmark image datasets, while maintaining a
compact representation.Comment: Deep Vision 201
Zero-bias autoencoders and the benefits of co-adapting features
Regularized training of an autoencoder typically results in hidden unit
biases that take on large negative values. We show that negative biases are a
natural result of using a hidden layer whose responsibility is to both
represent the input data and act as a selection mechanism that ensures sparsity
of the representation. We then show that negative biases impede the learning of
data distributions whose intrinsic dimensionality is high. We also propose a
new activation function that decouples the two roles of the hidden layer and
that allows us to learn representations on data with very high intrinsic
dimensionality, where standard autoencoders typically fail. Since the decoupled
activation function acts like an implicit regularizer, the model can be trained
by minimizing the reconstruction error of training data, without requiring any
additional regularization
Fourier Ptychography with Scheimpflug Optics for Multi-Aperture Applications
We present a new optical configuration using the Scheimpflug principle for Fourier ptychography microscopy. This configuration minimizes the aberrations present in the off-axis lenses of a multi-aperture Fourier ptychography setup. A 3D printed setup was used to demonstrate the experimental implementation
- …