3 research outputs found

    High Mortality of Pneumonia in Cirrhotic Patients with Ascites

    Get PDF
    [[abstract]]Background Cirrhotic patients with ascites are prone to develop various infectious diseases. This study aimed to evaluate the occurrence and effect of major infectious diseases on the mortality of cirrhotic patients with ascites. Methods We reviewed de-identified patient data from the National Health Insurance Database, derived from the Taiwan National Health Insurance Program, to enroll 4,576 cirrhotic patients with ascites, who were discharged from Taiwan hospitals between January 1, 2004 and June 30, 2004. We collected patientsā€™ demographic and clinical data, and reviewed diagnostic codes to determine infectious diseases and comorbid disorders of their hospitalizations. Patients were divided into an infection group and non-infection group and hazard ratios (HR) were determined for specific infectious diseases. Results Of the total 4,576 cirrhotic patients with ascites, 1,294 (28.2%) were diagnosed with infectious diseases during hospitalization. The major infectious diseases were spontaneous bacterial peritonitis (SBP) (645, 49.8%), urinary tract infection (151, 11.7%), and pneumonia (100, 7.7%). After adjusting for patientsā€™ age, gender, and other comorbid disorders, the HRs of infectious diseases for 30-day and 90-day mortality of cirrhotic patients with ascites were 1.81 (1.54-2.11) and 1.60 (1.43-1.80) respectively, compared to those in the non-infection group. The adjusted HRs of pneumonia, urinary tract infection (UTI), spontaneous bacterial peritonitis (SBP), and sepsis without specific focus (SWSF) were 2.95 (2.05-4.25), 1.32 (0.86-2.05), 1.77 (1.45-2.17), and 2.19 (1.62-2.96) for 30-day mortality, and 2.57 (1.93-3.42), 1.36 (1.01-1.82), 1.51 (1.29-1.75), and 2.13 (1.70-2.66) for 90-day mortality, compared to those in the non-infection group. Conclusion Infectious diseases increased 30-day and 90-day mortality of cirrhotic patients with ascites. Among all infectious diseases identified, pneumonia carried the highest risk for mortality.[[notice]]č£œę­£å®Œē•¢[[incitationindex]]SCI[[booktype]]電子

    Incompetence of Neutrophils to Invasive Group A streptococcus Is Attributed to Induction of Plural Virulence Factors by Dysfunction of a Regulator

    Get PDF
    Group A streptococcus (GAS) causes variety of diseases ranging from common pharyngitis to life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. The characteristic of invasive GAS infections has been thought to attribute to genetic changes in bacteria, however, no clear evidence has shown due to lack of an intriguingly study using serotype-matched isolates from clinical severe invasive GAS infections. In addition, rare outbreaks of invasive infections and their distinctive pathology in which infectious foci without neutrophil infiltration hypothesized us invasive GAS could evade host defense, especially neutrophil functions. Herein we report that a panel of serotype-matched GAS, which were clinically isolated from severe invasive but not from non-invaive infections, could abrogate functions of human polymorphnuclear neutrophils (PMN) in at least two independent ways; due to inducing necrosis to PMN by enhanced production of a pore-forming toxin streptolysin O (SLO) and due to impairment of PMN migration via digesting interleukin-8, a PMN attracting chemokine, by increased production of a serine protease ScpC. Expression of genes was upregulated by a loss of repressive function with the mutation of csrS gene in the all emm49 severe invasive GAS isolates. The csrS mutants from clinical severe invasive GAS isolates exhibited high mortality and disseminated infection with paucity of neutrophils, a characteristic pathology seen in human invasive GAS infection, in a mouse model. However, GAS which lack either SLO or ScpC exhibit much less mortality than the csrS-mutated parent invasive GAS isolate to the infected mice. These results suggest that the abilities of GAS to abrogate PMN functions can determine the onset and severity of invasive GAS infection
    corecore