1,013 research outputs found

    Valley light-emitting transistor

    Get PDF
    published_or_final_versio

    Thermal and Performance Efficient On-Chip Surface-Wave Communication for Many-Core Systems in Dark Silicon Era

    Get PDF
    Due to the exceedingly high integration density of VLSI circuits and the resulting high power density, thermal integrity became a major challenge. One way to tackle this problem is Dark silicon. Dark silicon is the amount of circuitry in a chip that is forced to switch off to insure thermal integrity of the system and prevent permanent thermal-related faults. In many-core systems, the presence of Dark Silicon adds new design constraints, in general, and on the communication fabric of such systems, in particular. This is due to the fact that system-level thermal-management systems tend to increase the distance between high activity cores to insure better thermal balancing and integrity. Consequently, a designing dilemma is created where a compromise has to be made between interconnect performance and power consumption. This study proposes a hybrid wire and surface-wave interconnect (SWI) based Network-on-Chip (NoC) to address the dark silicon challenge. Through efficient utilization of one-hop cross the chip communication SWI links, the proposed architecture is able to offer an efficient and scalable communication platform in terms of performance, power, and thermal impact. As a result, evaluations of the proposed architecture compared to baseline architecture under dark silicon scenarios show reduction in maximum temperature by 15°C, average delay up to 73.1%, and energy-saving up to ~3X. This study explores the promising potential of the proposed architecture in extending the utilization wall for current and future many-core systems in dark silicon era

    Five-year outcomes of western mental health training for Traditional Chinese Medicine Practitioners

    Get PDF
    published_or_final_versio

    Use of oral valaciclovir in a 12-year-old boy with herpes simplex encephalitis

    Get PDF
    We report on a 12-year-old boy with herpes simplex encephalitis, in whom a severe localised skin reaction developed following the infusion of intravenous acyclovir. Oral valaciclovir was given as continuation therapy to complete the 3-week course of antiviral treatment and resulted in complete recovery without side effects. This report illustrates the advantage of using the polymerase chain reaction to diagnose herpes simplex encephalitis and the potential use of newer antiviral agents, such as valaciclovir, as continuation therapy in the management of the infection. The higher oral bioavailability of newer antiviral agents allows part of the extended treatment period of patients with herpes simplex encephalitis to be carried out as an ambulatory oral regimen.published_or_final_versio

    Observation of an electrically tunable band gap in trilayer graphene

    Full text link
    A striking feature of bilayer graphene is the induction of a significant band gap in the electronic states by the application of a perpendicular electric field. Thicker graphene layers are also highly attractive materials. The ability to produce a band gap in these systems is of great fundamental and practical interest. Both experimental and theoretical investigations of graphene trilayers with the typical ABA layer stacking have, however, revealed the lack of any appreciable induced gap. Here we contrast this behavior with that exhibited by graphene trilayers with ABC crystallographic stacking. The symmetry of this structure is similar to that of AB stacked graphene bilayers and, as shown by infrared conductivity measurements, permits a large band gap to be formed by an applied electric field. Our results demonstrate the critical and hitherto neglected role of the crystallographic stacking sequence on the induction of a band gap in few-layer graphene.Comment: 10 pages, 5 figures, including the supplementary information on the electron-hole asymmetry of ABA-stacked trilaye

    Electric Field Effects on Graphene Materials

    Full text link
    Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2_2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε\varepsilon) of few-layer graphene and MoS2_2 is tunable by external electric fields (EextE_{\rm ext}). We show that at low fields (Eext<0.01E_{\rm ext}^{}<0.01 V/\AA) ε\varepsilon assumes a nearly constant value ∼\sim4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε\varepsilon with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε\varepsilon on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter: Advances in Physics and Chemistry, Springer Series on Carbon Materials. Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references

    Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides

    Get PDF
    Motivated by the triumph and limitation of graphene for electronic applications, atomically thin layers of group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like semiconductors with a desired band-gap in the visible frequency range. The monolayers feature a valence band spin splitting with opposite sign in the two valleys located at corners of 1st Brillouin zone. This spin-valley coupling, particularly pronounced in tungsten dichalcogenides, can benefit potential spintronics and valleytronics with the important consequences of spin-valley interplay and the suppression of spin and valley relaxations. Here we report the first optical studies of WS2 and WSe2 monolayers and multilayers. The efficiency of second harmonic generation shows a dramatic even-odd oscillation with the number of layers, consistent with the presence (absence) of inversion symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show the crossover from an indirect band gap semiconductor at mutilayers to a direct-gap one at monolayers. The PL spectra and first-principle calculations consistently reveal a spin-valley coupling of 0.4 eV which suppresses interlayer hopping and manifests as a thickness independent splitting pattern at valence band edge near K points. This giant spin-valley coupling, together with the valley dependent physical properties, may lead to rich possibilities for manipulating spin and valley degrees of freedom in these atomically thin 2D materials

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Oxidative stress-induced mitochondria alteration in human airway smooth muscle cells and mesenchymal stem cells

    Get PDF
    Poster Discussion Session - D27. Mitochondria: Live and Let Die: no. A5544RATIONALE: Exposure to cigarette smoke (CS) is the primary cause of chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) produced by CS, as well as by infiltrating inflammatory cells, in conjunction with compromised antioxidant defenses in the lungs of COPD patients, results in oxidative stress. Oxidative stress leads to defective function of lung cells, such as airway smooth muscle cells (ASMCs), driving airway inflammation and remodelling. Mitochondrial dysfunction caused by oxidative stress leads to changes in cell survival and inflammatory responses. Mitochondrial transfer between mesenchymal stem cell (MSC) and airway cells has been shown to reverse mitochondrial dysfunction in lung disease models. We investigated the effect of oxidative stress on mitochondrial function and viability of …published_or_final_versio

    Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways

    Get PDF
    BACKGROUND: Oxidative stress-induced mitochondrial dysfunction may contribute to inflammation and remodeling in chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells (MSCs) protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. OBJECTIVE: To examine the effect of induced-pluripotent stem cell-derived MSCs (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. METHODS: ASMCs were co-cultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) and apoptosis were measured. Conditioned media from iPSC-MSCs and trans-well co-cultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyper-responsiveness in ozone-exposed mice was also investigated. RESULTS: Co-culture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis and ΔΨm loss in ASMCs. iPSC-MSC-conditioned media or trans-well co-cultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct co-culture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyper-responsiveness and inflammation in mouse lungs. CONCLUSION: iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs, whilst reducing airway inflammation and hyper-responsiveness. These effects are, at least partly, dependent on cell-cell contact that allows for mitochondrial transfer, and paracrine regulation. Therefore, iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases such as COPD
    • …
    corecore