797 research outputs found
Magnetization plateaus and sublattice ordering in easy axis Kagome lattice antiferromagnets
We study kagome lattice antiferromagnets where the effects of easy axis
single-ion anisotropy () dominates over the Heisenberg exchange . For , virtual quantum fluctuations help lift the extensive classical
degeneracy. We demonstrate the presence of a one-third magnetization plateau
for a broad range of magnetic fields along the
easy axis. The fully equilibriated system at low temperature on this plateau
develops an unusual {\em nematic} order that breaks sublattice rotation
symmetry but not translation symmetry--however, extremely slow dynamics
associated with this ordering is expected to lead to glassy freezing of the
system on intermediate time-scales.Comment: published versio
Universal relaxational dynamics of gapped one dimensional models in the quantum sine-Gordon universality class
A semiclassical approach to the low-temperature real time dynamics of generic
one-dimensional, gapped models in the sine-Gordon model universality class is
developed. Asymptotically exact universal results for correlation functions are
obtained in the temperature regime T << Delta, where Delta is the energy gap.Comment: 4 pages, 1 figur
Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows
When an integrable two-degrees-of-freedom Hamiltonian system possessing a
circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It
is proved that its occurrence is generic for one parameter families
(co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical
experiments indicate that the motion near a parabolic resonance exhibits new
type of chaotic behavior which includes instabilities in some directions and
long trapping times in others. Moreover, in a degenerate case, near a {\it flat
parabolic resonance}, large scale instabilities appear. A model arising from an
atmospherical study is shown to exhibit flat parabolic resonance. This supplies
a simple mechanism for the transport of particles with {\it small} (i.e.
atmospherically relevant) initial velocities from the vicinity of the equator
to high latitudes. A modification of the model which allows the development of
atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities
are clearly observed
Semiclassical spin liquid state of easy axis Kagome antiferromagnets
Motivated by recent experiments on Nd-langasite, we consider the effect of
strong easy axis single-ion anisotropy on spins interacting with
antiferromagnetic exchange on the Kagome lattice. When , the
collinear low energy states selected by the anisotropy map on to configurations
of the classical Kagome lattice Ising antiferromagnet. However, the low
temperature limit is quite different from the cooperative Ising paramagnet that
obtains classically for . We find that sub-leading multi-spin interactions arising from the transverse quantum
dynamics result in a crossover from an intermediate temperature classical
cooperative Ising paramagnet to a semiclassical spin liquid with distinct
short-ranged correlations for .Comment: 4 pages, 3 eps figure
Non-ergodicity of the motion in three dimensional steep repelling dispersing potentials
It is demonstrated numerically that smooth three degrees of freedom
Hamiltonian systems which are arbitrarily close to three dimensional strictly
dispersing billiards (Sinai billiards) have islands of effective stability, and
hence are non-ergodic. The mechanism for creating the islands are corners of
the billiard domain.Comment: 6 pages, 8 figures, submitted to Chao
Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space
We investigate the dynamics of chaotic trajectories in simple yet physically
important Hamiltonian systems with non-hierarchical borders between regular and
chaotic regions with positive measures. We show that the stickiness to the
border of the regular regions in systems with such a sharply divided phase
space occurs through one-parameter families of marginally unstable periodic
orbits and is characterized by an exponent \gamma= 2 for the asymptotic
power-law decay of the distribution of recurrence times. Generic perturbations
lead to systems with hierarchical phase space, where the stickiness is
apparently enhanced due to the presence of infinitely many regular islands and
Cantori. In this case, we show that the distribution of recurrence times can be
composed of a sum of exponentials or a sum of power-laws, depending on the
relative contribution of the primary and secondary structures of the hierarchy.
Numerical verification of our main results are provided for area-preserving
maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution
figures is available at http://www.pks.mpg.de/~edugal
Cyclic mutually unbiased bases, Fibonacci polynomials and Wiedemann's conjecture
We relate the construction of a complete set of cyclic mutually unbiased
bases, i. e., mutually unbiased bases generated by a single unitary operator,
in power-of-two dimensions to the problem of finding a symmetric matrix over
F_2 with an irreducible characteristic polynomial that has a given Fibonacci
index. For dimensions of the form 2^(2^k) we present a solution that shows an
analogy to an open conjecture of Wiedemann in finite field theory. Finally, we
discuss the equivalence of mutually unbiased bases.Comment: 11 pages, added chapter on equivalenc
Symmetry breaking perturbations and strange attractors
The asymmetrically forced, damped Duffing oscillator is introduced as a
prototype model for analyzing the homoclinic tangle of symmetric dissipative
systems with \textit{symmetry breaking} disturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic
behavior of the system, e.g. transitions from two sided to one sided strange
attractors as the other parameters are varied. Moreover, slight asymmetries may
cause substantial asymmetries in the relative size of the basins of attraction
of the unforced nearly symmetric attracting regions. These changes seems to be
associated with homoclinic bifurcations. Numerical evidence indicates that
\textit{strange attractors} appear near curves corresponding to specific
secondary homoclinic bifurcations. These curves are found using analytical
perturbational tools
- …