1,392 research outputs found
Palmaria palmata (Dulse) as an unusual maritime aetiology of hyperkalemia in a patient with chronic renal failure: a case report
<p>Abstract</p> <p>Introduction</p> <p>Hyperkalemia is rare in individuals with normal renal function, regardless of dietary intake. This is due to the ability of the kidneys to adapt to increasing serum potassium concentrations. In patients with renal compromise, potassium homeostasis can become impaired. <it>Palmaria palmata </it>(dulse) is an edible seaweed known to be very rich in potassium. We report a case of hyperkalemia precipitated by the consumption of dulse by a patient with known renal disease.</p> <p>Case Presentation</p> <p>A 66-year-old Caucasian woman with diabetes and chronic renal disease presented to our emergency department with nausea, vomiting, and worsening malaise, which had been present for less than a day. She had undergone electrocardiogram monitoring, which showed bradycardia, and periods of asystole. Our patient denied any other symptoms. Laboratory analysis revealed a serum potassium level of 8.6 mmol/L (normal range 3.5 to 4.9 mmol/L). Although our patient was taking some medications known to influence renal function, the only recent change that she could recount was that she had consumed approximately 200 g of dulse within the preceding 24 hours. A diagnosis of hyperkalemia was made, and the patient was treated successfully, and discharged home in her pre-morbid state.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first published report of hyperkalemia due to dulse consumption. Dulse is high in potassium, with concentrations upwards of 34 times greater than that found in bananas. Caution should be taken in prescribing medications with potential adverse renal effects for patients with known renal impairment. In such instances, renal function should be monitored closely. Patients should be counseled to avoid dietary sources high in potassium, with particular attention paid to unusual geographical dietary variations.</p
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
CAR-T cell. the long and winding road to solid tumors
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles
Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury
Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients
- …