168 research outputs found
Strong temperature dependence of water reorientation in hydrophobic hydration shells
We study the temperature dependence of the orientational mobility of water molecules solvating hydrophobic molecular groups with femtosecond midinfrared spectroscopy. We observe that these dynamics show a strong temperature dependence. At temperatures 10 ps, which is more than four times slower than in bulk water. With increasing temperature, the reorientation of the solvating molecules strongly accelerates and becomes much more equal to the reorientation rate of the molecules in the bulk liquid. These observations indicate that water molecules form relatively rigid solvation structures around hydrophobic molecular groups that melt at elevated temperatures
Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
For most optoelectronic applications of graphene a thorough understanding of
the processes that govern energy relaxation of photoexcited carriers is
essential. The ultrafast energy relaxation in graphene occurs through two
competing pathways: carrier-carrier scattering -- creating an elevated carrier
temperature -- and optical phonon emission. At present, it is not clear what
determines the dominating relaxation pathway. Here we reach a unifying picture
of the ultrafast energy relaxation by investigating the terahertz
photoconductivity, while varying the Fermi energy, photon energy, and fluence
over a wide range. We find that sufficiently low fluence ( 4
J/cm) in conjunction with sufficiently high Fermi energy (
0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier
scattering, which leads to efficient carrier heating. Upon increasing the
fluence or decreasing the Fermi energy, the carrier heating efficiency
decreases, presumably due to energy relaxation that becomes increasingly
dominated by phonon emission. Carrier heating through carrier-carrier
scattering accounts for the negative photoconductivity for doped graphene
observed at terahertz frequencies. We present a simple model that reproduces
the data for a wide range of Fermi levels and excitation energies, and allows
us to qualitatively assess how the branching ratio between the two distinct
relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
Hot-carrier photocurrent effects at graphene-metal interfaces
Photoexcitation of graphene leads to an interesting sequence of phenomena,
some of which can be exploited in optoelectronic devices based on graphene. In
particular, the efficient and ultrafast generation of an electron distribution
with an elevated electron temperature and the concomitant generation of a
photo-thermoelectric voltage at symmetry-breaking interfaces is of interest for
photosensing and light harvesting. Here, we experimentally study the generated
photocurrent at the graphene-metal interface, focusing on the time-resolved
photocurrent, the effects of photon energy, Fermi energy and light
polarization. We show that a single framework based on photo-thermoelectric
photocurrent generation explains all experimental results
Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating
Graphene is a promising material for ultrafast and broadband photodetection.
Earlier studies addressed the general operation of graphene-based
photo-thermoelectric devices, and the switching speed, which is limited by the
charge carrier cooling time, on the order of picoseconds. However, the
generation of the photovoltage could occur at a much faster time scale, as it
is associated with the carrier heating time. Here, we measure the photovoltage
generation time and find it to be faster than 50 femtoseconds. As a
proof-of-principle application of this ultrafast photodetector, we use graphene
to directly measure, electrically, the pulse duration of a sub-50 femtosecond
laser pulse. The observation that carrier heating is ultrafast suggests that
energy from absorbed photons can be efficiently transferred to carrier heat. To
study this, we examine the spectral response and find a constant spectral
responsivity between 500 and 1500 nm. This is consistent with efficient
electron heating. These results are promising for ultrafast femtosecond and
broadband photodetector applications.Comment: 6 pages, 4 figure
Vibrational Förster transfer to hydrated protons
We have studied the influence of excess protons on the vibrational energy relaxation of the O-H and O-D stretching modes in water using femtosecond pump-probe spectroscopy. Without excess protons, we observe exponential decays with time constants of 1.7 and 4.3 ps for the bulk and anion bound O-D stretch vibrations. The addition of protons introduces a new energy relaxation pathway, which leads to an increasingly nonexponential decay of the O-D stretch vibration. This new pathway is attributed to a distance-dependent long range dipole-dipole (Förster) interaction between the O-D stretching vibration and modes associated with dissolved protons. The high efficiency of hydrated protons as receptors of vibrational energy follows from the very large absorption cross section and broad bandwidth of protons in water. For a proton concentration of 1M we find that Förster energy transfer occurs over an average distance of 4.5 Å, which corresponds to a separation of about two water molecules
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Driven coherent oscillations of a single electron spin in a quantum dot
The ability to control the quantum state of a single electron spin in a
quantum dot is at the heart of recent developments towards a scalable
spin-based quantum computer. In combination with the recently demonstrated
exchange gate between two neighbouring spins, driven coherent single spin
rotations would permit universal quantum operations. Here, we report the
experimental realization of single electron spin rotations in a double quantum
dot. First, we apply a continuous-wave oscillating magnetic field, generated
on-chip, and observe electron spin resonance in spin-dependent transport
measurements through the two dots. Next, we coherently control the quantum
state of the electron spin by applying short bursts of the oscillating magnetic
field and observe about eight oscillations of the spin state (so-called Rabi
oscillations) during a microsecond burst. These results demonstrate the
feasibility of operating single-electron spins in a quantum dot as quantum
bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary
materia
Hot-Carrier Cooling in High-Quality Graphene is Intrinsically Limited by Optical Phonons
Many promising optoelectronic devices, such as broadband photodetectors,
nonlinear frequency converters, and building blocks for data communication
systems, exploit photoexcited charge carriers in graphene. For these systems,
it is essential to understand, and eventually control, the cooling dynamics of
the photoinduced hot-carrier distribution. There is, however, still an active
debate on the different mechanisms that contribute to hot-carrier cooling. In
particular, the intrinsic cooling mechanism that ultimately limits the cooling
dynamics remains an open question. Here, we address this question by studying
two technologically relevant systems, consisting of high-quality graphene with
a mobility >10,000 cmVs and environments that do not
efficiently take up electronic heat from graphene: WSe-encapsulated
graphene and suspended graphene. We study the cooling dynamics of these two
high-quality graphene systems using ultrafast pump-probe spectroscopy at room
temperature. Cooling via disorder-assisted acoustic phonon scattering and
out-of-plane heat transfer to the environment is relatively inefficient in
these systems, predicting a cooling time of tens of picoseconds. However, we
observe much faster cooling, on a timescale of a few picoseconds. We attribute
this to an intrinsic cooling mechanism, where carriers in the hot-carrier
distribution with enough kinetic energy emit optical phonons. During phonon
emission, the electronic system continuously re-thermalizes, re-creating
carriers with enough energy to emit optical phonons. We develop an analytical
model that explains the observed dynamics, where cooling is eventually limited
by optical-to-acoustic phonon coupling. These fundamental insights into the
intrinsic cooling mechanism of hot carriers in graphene will play a key role in
guiding the development of graphene-based optoelectronic devices
Three Stages of Lysozyme Thermal Stabilization by High and Medium Charge Density Anions
Addition of high and medium charge density anions (phosphate, sulfate, and chloride) to lysozyme in pure water demonstrates three stages for stabilization of the protein structure. The first two stages have a minor impact on lysozyme stability and are probably associated with direct interaction of the ions with charged and partial charges on the protein’s surface. There is a clear transition between the second and third stages; in the case of sodium chloride, disodium sulfate and disodium hydrogen phosphate this is at 550, 210, and 120 mM, respectively. Stabilization of lysozyme can be explained by the free energy required to hydrate the protein as it unfolds. At low ion concentrations, the protein’s hydration layer is at equilibrium with the bulk water. After the transition, bulk water is depleted and the protein is competing for water with the ions. With competition for water between the protein and the ions at higher salt concentrations, the free energy required to hydrate the interior of the protein rises and it is this that stabilizes the protein structure
- …