123 research outputs found

    Randomness, Nonlocality and information in entagled correlations

    Get PDF
    It is shown that the Einstein, Podolsky and Rosen (EPR) correlations for arbitrary spin-s and the Greenberger, Horne and Zeilinger (GHZ) correlations for three particles can be described by nonlocal joint and conditional quantum probabilities. The nonlocality of these probabilities makes the Bell's inequalities void. A description that exhibits the relation between the randomness and the nonlocality of entangled correlations is introduced. Entangled EPR and GHZ correlations are studied using the Gibbs-Shannon entropy. The nonlocal character of the EPR correlations is tested using the information Bell's inequalities. Relations between the randomness, the nonlocality and the entropic information for the EPR and the GHZ correlations are established and discussed.Comment: 19 pages, REVTEX, 8 figures included in the uuencoded postscript fil

    String Entanglement and D-branes as Pure States

    Full text link
    We study the entanglement of closed strings degrees of freedom in order to investigate the microscopic structure and statistics of objects as D-branes. By considering the macroscopic pure state (MPS) limit, whenever the entanglement entropy goes to zero (in such a way that the macroscopic properties of the state are preserved), we show that boundary states may be recovered in this limit and, furthermore, the description through closed string (perturbative) degrees of freedom collapses. We also show how the thermal properties of branes and closed strings could be described by this model, and it requires that dissipative effects be taken into account. Extensions of the MPS analysis to more general systems at finite temperature are finally emphasized.Comment: 14 pages. Minor improvements. Published in Phys. Rev.

    Depolarization channels with zero-bandwidth noises

    Full text link
    A simple model describing depolarization channels with zero-bandwidth environment is presented and exactly solved. The environment is modelled by Lorentzian, telegraphic and Gaussian zero-bandwidth noises. Such channels can go beyond the standard Markov dynamics and therefore can illustrate the influence of memory effects of the noisy communication channel on the transmitted information. To quantify the disturbance of quantum states the entanglement fidelity between arbitrary input and output states is investigated.Comment: 15 pages, 3 figure

    Analysis of complete positivity conditions for quantum qutrit channels

    Full text link
    We present an analysis of complete positivity (CP) constraints on qutrit quantum channels that have a form of affine transformations of generalized Bloch vector. For diagonal (damping) channels we derive conditions analogous to the ones that in qubit case produce tetrahedron structure in the channel parameter space.Comment: 12 pages, 8 figures (.eps), minor changes in the text and formula

    Equivalence between two-mode spin squeezed states and pure entangled states with equal spin

    Full text link
    We prove that a pure entangled state of two subsystems with equal spin is equivalent to a two-mode spin-squeezed state under local operations except for a set of bipartite states with measure zero, and we provide a counterexample to the generalization of this result to two subsystems of unequal spin.Comment: 6 pages, no figure

    Generation and control of resonance states in crossed magnetic and electric fields

    Full text link
    A two-dimensional electron system interacting with an impurity and placed in crossed magnetic and electric fields is under investigation. Since it is assumed that an impurity center interacts as an attractive δ\delta-like potential a renormalization procedure for the retarded Green's function has to be carried out. For the vanishing electric field we obtain a close analytical expression for the Green's function and we find one bound state localized between Landau levels. It is also shown by numerical investigations that switching on the electric field new long-living resonance states localized in the vicinity of Landau levels can be generated.Comment: 6 pages, 6 figures, 1 tabl

    Finite-Time Disentanglement via Spontaneous Emission

    Full text link
    We show that under the influence of pure vacuum noise two entangled qubits become completely disentangled in a finite time, and in a specific example we find the time to be given by ln(2+22)\ln \Big(\frac{2 +\sqrt 2}{2}\Big) times the usual spontaneous lifetime.Comment: revtex, 4 pages, 2 figure

    Time-frequency Domain Analogues of Phase Space Sub-Planck Structures

    Full text link
    We present experimental data of the frequency resolved optical gating (FROG) measurements of light pulses revealing interference features corresponding to sub-Planck structures in phase space. For superpositions of pulses a small, sub-Fourier shift in the carrier frequency leads to a state orthogonal to the initial one, although in the representation of standard time-frequency distributions these states seem to have a nonvanishing overlap.Comment: New title, minor change

    Improvement of measurement accuracy in SU(1,1) interferometers

    Get PDF
    We consider an SU(1,1) interferometer employing four-wave mixers that is fed with two-mode states which are both coherent and intelligent states of the SU(1,1) Lie group. It is shown that the phase sensitivity of the interferometer can be essentially improved by using input states with a large photon-number difference between the modes.Comment: LaTeX, 5 pages, 1 figure (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/interfer_graph/qopt.ps.gz ). More information on http://www.technion.ac.il/~brif/science.htm

    Nonlocality of Two-Mode Squeezing with Internal Noise

    Full text link
    We examine the quantum states produced through parametric amplification with internal quantum noise. The internal diffusion arises by coupling both modes of light to a reservoir for the duration of the interaction time. The Wigner function for the diffused two-mode squeezed state is calculated. The nonlocality, separability, and purity of these quantum states of light are discussed. In addition, we conclude by studying the nonlocality of two other continuous variable states: the Werner state and the phase-diffused state for two light modes.Comment: 7 pages, 5 figures, submitted to PR
    corecore