34,905 research outputs found
Chiral phase transitions in strong chromomagnetic fields at finite temperature and dimensional reduction
Dynamical fermion mass generation in external chromomagnetic fields is
considered at non--zero temperature. The general features of dynamical chiral
symmetry breaking () are investigated for several field
configurations in relation to their symmetry properties and the form of the
quark spectrum. According to the fields, there arises dimensional reduction by
one or two units. In all cases there exists even at weak quark
attraction, confirming the idea about the dimensional insensitivity of this
mechanism in a chromomagnetic field.Comment: LATEX file, 12 pages, no figure
A renormalized Gross-Pitaevskii Theory and vortices in a strongly interacting Bose gas
We consider a strongly interacting Bose-Einstein condensate in a spherical
harmonic trap. The system is treated by applying a slave-boson representation
for hard-core bosons. A renormalized Gross-Pitaevskii theory is derived for the
condensate wave function that describes the dilute regime (like the
conventional Gross-Pitaevskii theory) as well as the dense regime. We calculate
the condensate density of a rotating condensate for both the vortex-free
condensate and the condensate with a single vortex and determine the critical
angular velocity for the formation of a stable vortex in a rotating trap.Comment: 13 pages, 5 figures; revision and extension, figure 2 adde
Multilayer gas cells for sub-Doppler spectroscopy
We have carried out theoretical research on ultra-high resolution
spectroscopy of atoms (or molecules) in the suggested cell with a series of
plane-parallel thin gas layers between spatially separated gas regions of this
cell for optical pumping and probing. It is shown the effective velocity
selection of optically pumped atoms because of their specific transit time and
collisional relaxation in such a cell, which lead to narrow sub-Doppler
resonances in absorption of the probe monochromatic light beam. Resolution of
this spectroscopic method is analyzed in cases of stationary and definite
nonstationary optical pumping of atoms by the broadband radiation versus
geometrical parameters of given cells and pumping intensity. The suggested
multilayer gas cell is the compact analog of many parallel atomic (molecular)
beams and may be used also as the basis of new compact optical frequency
standards of high accuracy.Comment: 12 pages, 4 figure
- …