25,125 research outputs found

    Understanding the Protected Nodes and Collapse of the Fermi Arcs in Underdoped Cuprate Superconductors

    Full text link
    We show how recent angle resolved photoemission measurements addressing the Fermi arcs in the cuprates reveal a very natural phenomenological description of the complex superfluid phase. Importantly, this phenomenology is consistent with a previously presented microscopic theory. By distinguishing the order parameter and the excitation gap, we are able to demonstrate how the collapse of the arcs below TcT_c into well defined nodes is associated with the \emph{smooth} emergence of superconducting coherence. Comparison of this theory with experiment shows good semi-quantitative agreement.Comment: 4 pages, 4 figures, replaced with updated versio

    Theory of Diamagnetism in the Pseudogap Phase: Implications from the Self energy of Angle Resolved Photoemission

    Full text link
    In this paper we apply the emerging- consensus understanding of the fermionic self energy deduced from angle resolved photoemisssion spectroscopy (ARPES) experiments to deduce the implications for orbital diamagnetism in the underdoped cuprates. Many theories using many different starting points have arrived at a broadened BCS-like form for the normal state self energy associated with a d-wave excitation gap, as is compatible with ARPES data. Establishing compatibility with the f-sum rules, we show how this self energy, along with the constraint that there is no Meissner effect in the normal phase are sufficient to deduce the orbital susceptibility. We conclude, moreover, that diamagnetism is large for a d-wave pseudogap. Our results should apply rather widely to many theories of the pseudogap, independent of the microscopic details.Comment: 15 pages, 8 figure

    Nucleation of Spontaneous Vortices in Trapped Fermi Gases Undergoing a BCS-BEC Crossover

    Full text link
    We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents towards the center of the condensate as well as possible condensate volume oscillations.Comment: 5 pages, 3 figure
    • …
    corecore